Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(3): 1107-1112    DOI: 10.1088/1674-1056/17/3/059
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation on the thermal radiation properties of antimony doped tin oxide particles

Fu Cheng-Wua, Chen Ming-Qinga, Zhang Shuan-Qinb
a School of Chemical and Material Engineering, Southern Yangtze University, Wuxi 214122, China; b The First Engineers Scientific Research Institute of the General Armaments Department, Wuxi 214035, China
Abstract  This paper reports the preparation of antimony doped tin oxide crystalline powders by chemical coprecipitation method. The influence of sintering temperature and the sintering retention time on the thermal infrared emissivity is analysed. The thermal infrared reflectivity is measured and the optimum doping concentration is proposed.
Keywords:  sintered temperature      thermal radiation      antimony-doped tin  
Received:  28 January 2007      Revised:  19 October 2007      Published:  04 March 2008
PACS:  81.20.Fw (Sol-gel processing, precipitation)  
  61.72.S- (Impurities in crystals)  
  61.72.up (Other materials)  
  78.30.Ly (Disordered solids)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  

Cite this article: 

Fu Cheng-Wu, Chen Ming-Qing, Zhang Shuan-Qin Investigation on the thermal radiation properties of antimony doped tin oxide particles 2008 Chin. Phys. B 17 1107

[1] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[2] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[3] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song, Liu Shi-Bing. Chin. Phys. B, 2015, 24(5): 054401.
[4] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[5] Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation
Swati Mukhopadhyay. Chin. Phys. B, 2014, 23(1): 014702.
[6] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing, Cheng Xue-Tao, Liang Xin-Gang. Chin. Phys. B, 2013, 22(8): 084401.
[7] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun, Pan Wei-Zhen, Yang Xue-Jun. Chin. Phys. B, 2013, 22(3): 039701.
[8] A possible mechanism for magnetar soft X-ray/γ-ray emission
Gao Zhi-Fu,Peng Qiu-He,Wang Na,Chou Chih-Kang. Chin. Phys. B, 2012, 21(5): 057109.
[9] Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation
Pan Wei-Zhen, Yang Xue-Jun, Xie Zhi-Kun. Chin. Phys. B, 2011, 20(4): 049701.
[10] Thermal radiation and nonthermal radiation of the slowly changing dynamic Kerr--Newman black hole
Meng Qing-Miao, Wang Shuai, Jiang Ji-Jian, Deng De-Li. Chin. Phys. B, 2008, 17(8): 2811-2816.
[11] Quantum radiation of non-stationary Kerr-Newman-de Sitter black hole
Jiang Qing-Quan, Yang Shu-Zheng, Li Hui-Ling. Chin. Phys. B, 2005, 14(9): 1736-1744.
[12] COHERENT INFORMATION ON THERMAL RADIATION NOISE CHANNEL: AN APPROACH OF INTEGRAL WITHIN ORDERED PRODUCT OF OPERATORS
Chen Xiao-yu, Qiu Pei-liang. Chin. Phys. B, 2001, 10(9): 779-782.
No Suggested Reading articles found!