Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(2): 370-372    DOI: 10.1088/1674-1056/17/2/002
GENERAL Prev   Next  

Asymptotic solution for a class of sea--air oscillator model for El Nino--southern oscillation

Mo Jia-Qia, Lin Wan-Taob
a Anhui Normal University, Wuhu 241000, China;Division of Computational Science, E-Institutes of Shanghai Universities, at Shanghai Jiaotong University, Shanghai 200240, China;Huzhou Teachers College, Huzhou 313000, China; b LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The El Ni\~{n}o--Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific Ocean--atmosphere interactions. In this paper, an asymptotic method of solving the nonlinear equation for the ENSO model is used. And based on a class of oscillator of ENSO model, the approximate solution of a corresponding problem is studied by employing the perturbation method. Firstly, an ENSO model of nonlinear time delay equation of equatorial Pacific is introduced, Secondly, by using the perturbed method, the zeroth and first order asymptotic perturbed solutions are constructed. Finally, from the comparison of the values for a figure, it is seen that the first asymptotic perturbed solution using the perturbation method has a good accuracy. And it is proved from the results that the perturbation method can be used as an analytic operation for the sea surface temperature anomaly in the equatorial Pacific of the atmosphere-ocean oscillation for the ENSO model.
Keywords:  El Ni\~{n}o-Southern Oscillation Model      nonlinear      perturbation method  
Received:  17 April 2007      Revised:  15 May 2007      Published:  20 February 2008
PACS:  92.10.am (El Nino Southern Oscillation)  
  92.10.Kp (Sea-air energy exchange processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 40676016 and 10471039), the State Key Program for Basic Research of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Project of the Chinese Academy of Sciences (Grant No KZCX3-SW-221), in partly by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004), and the Natural Science Foundation of Zhejiang Province, China (Grant No Y606268).

Cite this article: 

Mo Jia-Qi, Lin Wan-Tao Asymptotic solution for a class of sea--air oscillator model for El Nino--southern oscillation 2008 Chin. Phys. B 17 370

[1] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[2] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[3] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[4] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[5] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[6] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[7] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[8] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[9] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[10] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[11] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[12] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[13] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[14] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[15] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
No Suggested Reading articles found!