Please wait a minute...
Chinese Physics, 2007, Vol. 16(5): 1209-1214    DOI: 10.1088/1009-1963/16/5/006
GENERAL Prev   Next  

Remote preparation of a Greenberger--Horne--Zeilinger state via a two-particle entangled state

Lin Xiu(林秀), Li Hong-Cai(李洪才), Lin Xiu-Min (林秀敏), Li Xing-Hua(李兴华), and Yang Rong-Can(杨榕灿)
School of Physics and Optoelectronics, Fujian Normal University, Fuzhou 350007, China
Abstract  We present two schemes for realizing the remote preparation of a Greenberger--Horne--Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an N-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.
Keywords:  remote state preparation      two-particle entangled state      Greenberger--Horne--Zeilinger (GHZ) state      controlled-not operation      cavity quantum electrodynamics (QED)  
Received:  22 November 2005      Revised:  17 November 2006      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10574022), and the Fund of the Natural Science of Fujian Province, China (Grant No Z0512006).

Cite this article: 

Lin Xiu(林秀), Li Hong-Cai(李洪才), Lin Xiu-Min (林秀敏), Li Xing-Hua(李兴华), and Yang Rong-Can(杨榕灿) Remote preparation of a Greenberger--Horne--Zeilinger state via a two-particle entangled state 2007 Chinese Physics 16 1209

[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[3] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[4] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[5] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[6] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[7] Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels
Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先). Chin. Phys. B, 2014, 23(9): 090307.
[8] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
[9] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[10] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[11] Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost
Dai Hong-Yi(戴宏毅), Zhang Ming(张明), Chen Ju-Mei(陈菊梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2011, 20(5): 050310.
[12] Participant attack on quantum secret sharing based on entanglement swapping
Song Ting-Ting(宋婷婷), Zhang Jie(张劼), Gao Fei(高飞), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣). Chin. Phys. B, 2009, 18(4): 1333-1337.
[13] Scheme for implementing perfect remote state preparation with W-class state in cavity QED
Wang Xue-Wen(王学文) and Peng Zhao-Hui(彭朝晖). Chin. Phys. B, 2008, 17(7): 2346-2351.
[14] Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state
Ma Peng-Cheng(马鹏程) and Zhan You-Bang(詹佑邦). Chin. Phys. B, 2008, 17(2): 445-450.
[15] High efficient scheme for remote state preparation with cavity QED
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Xu Yan-Qiu(徐彦秋). Chin. Phys. B, 2008, 17(10): 3725-3728.
No Suggested Reading articles found!