Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(12): 881-888    DOI: 10.1088/1004-423X/8/12/001
GENERAL   Next  

INTERFACE SHAPE AND CONCENTRATION DISTRIBUTION IN CRYSTALLIZATION FROM SOLUTION UNDER MICROGRAVITY

LIU YONG-CAI (刘永才)ab, CHEN WAN-CHUN (陈万春)ac, HUO CHONG-RU (霍崇儒)a, GE PEI-WEN (葛培文)a
a Institute of Physics, Chinese Academy of Science, Beijing 100080, China; 
b School of Chemical Engineering, Tianjin University, Tianjin 300072, China; 
c National Microgravity Laboratory, Chinese Academy of Sciences, Beijing 100080, China
Abstract  The influence of the gravity and interface kinetics on interface shape and interfacial concentration distribution was numerically investigated by using Galerkin finite element method.A boundary mapping technique was used for dealing with free boundary problem. A two-dimensional steady-state model of TGS crystal growth was developed. The results show that with the increase of the gravity level, the growth rate becomes faster, the growth face becomes more curved and interfacial concentration distribution more non-uniform. The consideration of interface kinetics will cause the decrease of growth rate as compared with the pure transport model. It seems that the interface shape does not change very much within two cases of k=5.7cm4/(mol·s) and k=∞, but its position does.
Received:  13 May 1999      Accepted manuscript online: 
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  68.35.Ct (Interface structure and roughness)  
  02.70.Dh (Finite-element and Galerkin methods)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  81.10.Dn (Growth from solutions)  
Fund: Project supported by the National Commission of Science and Technology(Grant No.95-Yu-34),and by the Foundation of National Education Commission.

Cite this article: 

LIU YONG-CAI (刘永才), CHEN WAN-CHUN (陈万春), HUO CHONG-RU (霍崇儒), GE PEI-WEN (葛培文) INTERFACE SHAPE AND CONCENTRATION DISTRIBUTION IN CRYSTALLIZATION FROM SOLUTION UNDER MICROGRAVITY 1999 Acta Physica Sinica (Overseas Edition) 8 881

[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[3] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[4] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[5] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[6] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[7] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[8] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[9] Growth and aggregation of Cu nanocrystals on ionic liquid surfaces
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔). Chin. Phys. B, 2020, 29(6): 066801.
[10] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[11] Optical phonon behavior and magnetism of columbite Zn0.8Co0.2Nb2O6
Liang Li(李亮), Xiaohan Wang(王晓晗), Ying Liu(刘莹), Fangfei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2019, 28(12): 128104.
[12] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[13] Heterogeneous growth of KDP/KT crystal
Chao Wang(王超), Wei Shi(施巍), Zhuang-Zhuang Zhang(张壮壮), Hui Cao(曹惠), Ren-Chao Che(车仁超). Chin. Phys. B, 2017, 26(10): 104209.
[14] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[15] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
No Suggested Reading articles found!