Please wait a minute...
Acta Phys. Sin. (Overseas Edition), 1996, Vol. 5(7): 520-529    DOI: 10.1088/1004-423X/5/7/006
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

THEORETICAL INVESTIGATION OF ELECTRON-NEUTRAL ATOM COLLISION PROCESS AND ELECTRON TRANSPORT PARAMETERS IN DC GLOW DISCHARGE OF PLASMA WITH A TRANSVERSE MAGNETIC FIELD

WEI HE-LINa, LIU ZU-LIa, LI ZAI-GUANGb, ZHENG QI-GUANGb
a Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; b National Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A Monte Carlo simulation (MCS) technique is used to simulate the cathode sheath region of a helium dc glow discharge. In such a simulation, a nonuniform electric field and a transverse uniform magnetic field are considered. When the magnetic field intensity increases from 0 to 800 G, all types of collision considered in this paper are enhanced. This result is in agreement with the experimental result. The results also show that with the increase of magnetic field intensity, the electron transport time, the electron density increase, and the electron mean energy decreases.
Received:  20 February 1995      Revised:  05 October 1995      Published:  20 July 1996
PACS:  52.80.Hc (Glow; corona)  
  52.25.Fi (Transport properties)  
  52.65.Pp (Monte Carlo methods)  
  52.40.Kh (Plasma sheaths)  
  52.20.Fs (Electron collisions)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
Fund: Project supported by the National Natural Science Foundation of China.

Cite this article: 

WEI HE-LIN, LIU ZU-LI, LI ZAI-GUANG, ZHENG QI-GUANG THEORETICAL INVESTIGATION OF ELECTRON-NEUTRAL ATOM COLLISION PROCESS AND ELECTRON TRANSPORT PARAMETERS IN DC GLOW DISCHARGE OF PLASMA WITH A TRANSVERSE MAGNETIC FIELD 1996 Acta Phys. Sin. (Overseas Edition) 5 520

[1] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[2] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[3] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[4] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[5] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[6] Effect of electrical discharge in water on concentration of nitrate solution
F Sohbatzadeh, H Bagheri, R Safari. Chin. Phys. B, 2017, 26(2): 025101.
[7] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[8] A novel simulation method for positive corona current pulses
Liu Yang, Cui Xiang, Lu Tie-Bing, Li Xue-Bao, Wang Zhen-Guo, Xiang Yu, Wang Xiao-Bo. Chin. Phys. B, 2015, 24(6): 065201.
[9] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
[10] Characteristics of a large gap uniform discharge excited by DC voltage at atmospheric pressure
Li Xue-Chen, Bao Wen-Ting, Jia Peng-Ying, Zhao Huan-Huan, Di Cong, Chen Jun-Ying. Chin. Phys. B, 2014, 23(9): 095202.
[11] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng, He Ya-Feng, Wang Xiao-Fei. Chin. Phys. B, 2014, 23(7): 075209.
[12] Determinations of plasma density and decay time in the hollow cathode discharge by microwave transmission
Zhang Lin, He Feng, Li Shi-Chao, Ouyang Ji-Ting. Chin. Phys. B, 2013, 22(12): 125202.
[13] Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures
Sima Wen-Xia, Peng Qing-Jun, Yang Qing, Yuan Tao, Shi Jian. Chin. Phys. B, 2013, 22(1): 015203.
[14] Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization
Chen Guang-Liang, Zheng Xu, Lü Guo-Hua, Zhang Zhao-Xia, Sylvain Massey, Wilson Smith, Michael Tatoulian, Yang Si-Ze. Chin. Phys. B, 2012, 21(10): 105201.
[15] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen, Niu Dong-Ying, Xu Long-Fei, Jia Peng-Ying, Chang Yuan-Yuan. Chin. Phys. B, 2012, 21(7): 075204.
No Suggested Reading articles found!