|
Special Issue:
|
| SPECIAL TOPIC — A celebration of the 90th Anniversary of the Birth of Bolin Hao |
Prev
Next
|
|
|
Analysis of spatiotemporal dynamic patterns of gene expression during mouse embryonic development based on Moran's I and spatial transcriptomics |
| Qi-Chao Li(李啟超)1,2,†, Hai Lin(林海)2,†, Peng Wang(王鹏)1,2, Qiutong Dong(董秋彤)1,2, Kun Wang(王坤)1,2, Jian-Wei Shuai(帅建伟)2,‡, and Fang-Fu Ye(叶方富)1,2,,§ |
1 Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, China; 2 Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China |
|
|
|
|
Abstract Spatial transcriptomics technology provides novel insights into the spatial organization of gene expression during embryonic development. In this study, we propose a method that integrates analysis across both temporal and spatial dimensions to investigate spatial transcriptomics data from mouse embryos at different developmental stages. We quantified the spatial expression pattern of each gene at various stages by calculating its Moran's I. Furthermore, by employing time-series clustering to identify dynamic co-expression modules, we identified several developmentally stage-specific regulatory gene modules. A key finding was the presence of distinct, stage-specific gene network modules across different developmental periods: Early modules focused on morphogenesis, mid-stage on organ development, and late-stage on neural and tissue maturation. Functional enrichment analysis further confirmed the core biological functions of each module. The dynamic, spatially-resolved gene expression model constructed in this study not only provides new biological insights into the programmed spatiotemporal reorganization of gene regulatory networks during embryonic development but also presents an effective approach for analyzing complex spatiotemporal omics data. This work provides a new perspective for understanding developmental biology, regenerative medicine, and related fields.
|
Received: 04 May 2025
Revised: 04 June 2025
Accepted manuscript online: 13 June 2025
|
|
PACS:
|
87.10.Vg
|
(Biological information)
|
| |
87.85.mg
|
(Genomics)
|
| |
05.45.Tp
|
(Time series analysis)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12090052, U24A2014, and 12325405). |
Corresponding Authors:
Jian-Wei Shuai, Fang-Fu Ye
E-mail: jianweishuai@xmu.edu.cn;fye@iphy.ac.cn
|
Cite this article:
Qi-Chao Li(李啟超), Hai Lin(林海), Peng Wang(王鹏), Qiutong Dong(董秋彤), Kun Wang(王坤), Jian-Wei Shuai(帅建伟), and Fang-Fu Ye(叶方富) Analysis of spatiotemporal dynamic patterns of gene expression during mouse embryonic development based on Moran's I and spatial transcriptomics 2025 Chin. Phys. B 34 088703
|
[1] Liberali P and Schier A F 2024 Cell 187 3461 [2] Tian L, Chen F and Macosko E Z 2023 Nature Biotechnology 41 773 [3] Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro J F, Magnusson J, Giacomello S, Asp M, Westholm J O, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg Å, Ponteń F, Costea PI, Sahleń P, Mulder J, Bergmann O, Lundeberg J and Frisén J 2016 Science 353 78 [4] Rao A, Barkley D, França G S and Yanai I 2021 Nature 596 211 [5] Xu F, Li X, Wu R, Qi H, Jin J, Liu Z, Wu Y, Lin H, Shen C and Shuai J 2024 Fundam. Res. in press [6] Delile J, Rayon T, Melchionda M, Edwards A, Briscoe J, Sagner A, Klein A and Treutlein B 2019 Development 146 dev173807 [7] Xu Y, Zhang T, Zhou Q, Hu M, Qi Y, Xue Y, Nie Y, Wang L, Bao Z and Shi W 2023 Nature Cell Biology 25 604 [8] Lin H, Hu H, Feng Z, Xu F, Lyu J, Li X, Liu L, Yang G and Shuai J 2024 Nucleic Acids Res. 52 6114 [9] He Q, Li X, Zhong J, Yang G, Han J and Shuai J 2024 Smart. Med. 3 e20240014 [10] Moran P A P 1950 Biometrika 37 17 [11] Augustine D J, Te Booth Dr, Cox S E and Derner J D 2012 Rangeland Ecology & Management 65 39 [12] Griffith D A and Chun Y 2016 Remote Sensing 8 535 [13] Yang J, Song C, Yang Y, Xu C, Guo F and Xie L 2019 Geomorphology 324 62 [14] Zhang J, Liu Z, Zhao W, Li C, Liu F and Wang J 2025 Smart. Med. 4 e70005 [15] Qiu Z, Li S, Luo M, Zhu S, Wang Z and Jiang Y 2022 Front. Neurosci. 16 1086168 [16] Lin Y, Wang Y, Liang Y, Yu Y, Li J, Ma Q, He F and Xu D 2022 Front. Genet. 13 912813 [17] Li H, Calder C and Cressie N 2007 Geographical Analysis 39 357 [18] Cover T and Hart P 1967 IEEE Trans. Inf. Theory 13 21 [19] Tavenard R, Faouzi J, Vandewiele G, Divo F, Androz G, Holtz C, Payne M, Yurchak R, Rußwurm M, Kolar K and Woods E 2020 Journal of Machine Learning Research 21 118 [20] Temur N, Eryilmaz-Eren E, Celik I, Yıldız I E, Nisari M, Unal I S, Celik C, Ildiz N and Ocsoy I 2025 Smart. Med. 4 e70007 [21] Zhong C, Ang K S and Chen J 2024 Nature Methods 21 2072 [22] Liu J, Zhi X, Fang X, Li W, Zhao W, Liu M, Lai E, Fang W, Wang J, Zheng Y, Zou J, Fu Q, CuiWand Zhang K 2025 Smart. Med. 4 e70010 [23] Satopaa V, Albrecht J, Irwin D and Raghavan B 2011 2011 31st International Conference on Distributed Computing Systems Workshops, June 20–24, 2011 Minneapolis, MN, USA p. 166 [24] Ding H, Xue L, Zhu S, Wang Z, Gui H, Zhang G, Tang N, Ren H and Chen D 2025 Smart. Med. 4 e70009 [25] Zhu F, Niu Q, Li X, Zhao Q, Su H and Shuai J 2024 Research 7 0361 [26] Petitjean F, Ketterlin A and Gançarski P 2011 Pattern Recognition 44 678 [27] Arthur D and Vassilvitskii S 2007 Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, January 7–9, 2007 New Orleans, Louisiana p. 1027 [28] Li X, Zhang P, Yin Z, Xu F, Yang Z H, Jin J, Qu J, Liu Z, Qi H, Yao C and Shuai J 2022 Research 2022 9838341 [29] Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi A H, Tanaseichuk O, Benner C and Chanda S K 2019 Nat. Commun. 10 1523 [30] Consortium G O 2004 Nucleic Acids Research 32 D258 [31] Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K 2016 Nucleic Acids Res. 45 D353 [32] Rice J A 2007 Mathematical Statistics and Data Analysis 3rd Ed. (Belmont, CA: Thomson/Brooks/Cole) p. 42 [33] Benjamini Y and Hochberg Y 1995 Journal of the Royal Statistical Society: Series B (Methodological) 57 289 [34] McHugh M L 2012 Biochemia Medica 22 276 [35] Murtagh F and Contreras P 2012 WIREs 2 86 [36] Lara-Ramírez R, Zieger E and Schubert M 2013 Int. J. Biochem. Cell Biol. 45 1302 [37] Niederreither K, Subbarayan V, Dollé P and Chambon P 1999 Nat. Genet. 21 444 [38] Krishnan A, Samtani R, Dhanantwari P, Lee E, Yamada S, Shiota K, Donofrio M T, Leatherbury L and Lo C W 2014 Pediatric Research 76 500 [39] Row R H, Pegg A, Kinney B A, Farr G H III, Maves L, Lowell S, Wilson V and Martin B L 2018 eLife 7 e31018 [40] Wu M, Wu S, Chen W and Li YP 2024 Cell Res. 34 101 [41] Hrabě de Angelis M, McIntyre J and Gossler A 1997 Nature 386 717 [42] Komori T 2022 Int. J. Mol. Sci. 23 5776 [43] Wang S, Drummond M L, Guerrero-Juarez C F, Tarapore E, MacLean A L, Stabell A R, Wu S C, Gutierrez G, That B T, Benavente C A, Nie Q and Atwood S X 2020 Nat. Commun. 11 4239 [44] Liu Z, Lin H, Li X, Xue H, Lu Y, Xu F and Shuai J 2025 Brief. Bioinform. 26 bbae698 [45] Xu F, Hu H, Lin H, Lu J, Cheng F, Zhang J, Li X and Shuai J 2024 Brief. Bioinform. 25 bbae091 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|