Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054301    DOI: 10.1088/1674-1056/ad2dcd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental realization of fractal fretwork metasurface for sound anomalous modulation

Jiajie He(何佳杰)1, Shumeng Yu(于书萌)1, Xue Jiang(江雪)1,†, and Dean Ta(他得安)1,2,‡
1 Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China;
2 Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
Abstract  Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences. Inspired by the fractal geometry in nature and the fretwork frame in ancient culture, here we design the acoustic metasurface to realize sound anomalous modulation, which manifests itself as an incident-dependent propagation behavior: sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed. We quantitatively investigate the dependences of asymmetric transmission on the propagation direction, incident angle and operating frequency by calculating sound transmittance and energy contrast. This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption.
Keywords:  acoustic metasurface      fractal geometry      sound anomalous modulation  
Received:  15 January 2024      Revised:  24 February 2024      Accepted manuscript online:  28 February 2024
PACS:  43.20.+g (General linear acoustics)  
  43.28.+h (Aeroacoustics and atmospheric sound)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404500), the National Natural Science Foundation of China (Grant Nos. T2222024 and 12034005), the STCSM Science and Technology Innovation Plan of Shanghai Science and Technology Commission (Grant Nos. 20ZR1404200 and 21JC1400300).
Corresponding Authors:  Xue Jiang, Dean Ta     E-mail:  xuejiang@fudan.edu.cn;tda@fudan.edu.cn

Cite this article: 

Jiajie He(何佳杰), Shumeng Yu(于书萌), Xue Jiang(江雪), and Dean Ta(他得安) Experimental realization of fractal fretwork metasurface for sound anomalous modulation 2024 Chin. Phys. B 33 054301

[1] Mandelbrot B B and Wheeler J A 1983 Am. J. Phys. 51 286
[2] Lakes R 1993 Nature 361 511
[3] Gouyet J F 1997 Am. J. Phys. 65 676
[4] Anazawa M, Ishikawa A, Suzuki T and Tomoyose M 2004 Physica A 335 616
[5] Meyer H V, Dawes T J W, Serrani M, et al. 2020 Nature 584 589
[6] Du Q, Yang H, Lv T and Wang X 2013 Opt. Commun. 74 301
[7] Oftadeh R, Haghpanah B, Vella D, Boudaoud A and Vaziri A 2014 Phys. Rev. Lett. 113 104301
[8] Song G Y, Huang B, Dong H Y, Cheng Q and Cui T J 2016 Sci. Rep. 6 35929
[9] Miniaci M, Krushynska A, Gliozzi A S, Kherraz N, Bosia F and Pugno N M 2018 Phys. Rev. Appl. 10 024012
[10] Wu G, Ke Y, Zhang L and Tao M 2022 Appl. Phys. Express 15 014002
[11] Chen Y, Peng R and You Z 2015 Science 349 396
[12] Kim W, Byun J, Kim J K, Choi W Y, Jakobsen K, Jakobsen J, Lee D Y and Cho K J 2019 Sci. Robot. 4 eaay3493
[13] Walker A and Stankovic T 2022 Commun. Mater. 3 4
[14] Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Sci. Rep. 3 2546
[15] Xie Y, Popa B I, Zigoneanu L and Cummer S A 2013 Phys. Rev. Lett. 110 175501
[16] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q and Liu X J 2015 Nat. Mater. 14 1013
[17] Jeon G J and Oh J H 2021 Phys. Rev. E 103 012212
[18] He J J, Jiang X, Ta D A and Wang W Q 2020 Appl. Phys. Lett. 117 091901
[19] Yu G, Qiu Y, Li Y, Wang X and Wang N 2021 Phys. Rev. Appl. 15 064064
[20] Zhou P, Jia H, Bi Y, Liao B, Yang Y, Yan K, Zhang J and Yang J 2022 Phys. Rev. Appl. 18 014050
[21] Melde K, Mark A G, Qiu T and Fischer P 2016 Nature 537 518
[22] Zhu Y and Assouar B 2019 Phys. Rev. Mater. 3 045201
[23] Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X and Garcia-Vidal F J 2011 Nat. Phys. 7 52
[24] Shen Y X, Peng Y G, Cai F, Huang K, Zhao D G, Qiu C W, Zheng H and Zhu X F 2019 Nat. Commun. 10 3411
[25] Chen A, Zhao X, Yang Z, Anderson S and Zhang X 2022 Phys. Rev. Appl. 18 064057
[26] He J J, Zhou Z L, Zhang C X, Zheng Y, Li Y, Li Y, Jiang X and Ta D A 2022 Appl. Phys. Lett. 120 191701
[27] Zhou Z L, Huang S B, Li D T, Zhu J and Li Y 2022 Natl. Sci. Rev. 9 nwab171
[28] Zhang S, Zhang Y, Guo Y J, Leng Y H, Feng W and Cao W W 2016 Phys. Rev. Appl. 5 034006
[29] Wu L T, Zhang C, Ke J C, Cheng Q, Cui T J and Jing Y 2019 Sci. Bull. 64 808
[30] Gu Z M, Gao H, Cao P C, Liu T, Zhu X F and Zhu J 2021 Phys. Rev. Appl. 16 057001
[31] Wang R and Yang F B 2022 Appl. Phys. Express 15 104003
[32] Fleury R, Sounas D L, Sieck C F, Haberman M R and Alù A 2014 Science 343 516
[33] Popa B I and Cummer S A 2014 Nat. Commun. 5 3398
[34] Devaux T, Tournat V, Richoux O and Pagneux V 2015 Phys. Rev. Lett. 115 234301
[35] Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S A and Jing Y 2017 Phys. Rev. Lett. 119 035501
[36] Xie B, Cheng H, Tang K, Liu Z, Chen S and Tian J 2017 Phys. Rev. Appl. 7 024010
[37] Ju F, Tian Y, ChengY and Liu X 2018 Appl. Phys. Lett. 113 121901
[38] Zhu Y F, Zou X Y, Liang B and Cheng J C 2015 Appl. Phys. Lett. 107 113501
[39] Zhu J, Zhu X F, Yin X B, Wang Y and Zhang X 2020 Phys. Rev. Appl. 13 041001
[40] Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J and Ge Y 2018 Phys. Rev. Appl. 10 014016
[41] Zuo S, Tian Y, Cheng Y, Deng M, Hu N and Liu X 2019 Phys. Rev. Mater. 3 065204
[42] Zhu J, Zhu X, Yin X, Wang Y and Zhang X 2020 Phys. Rev. Appl. 13 041001
[43] Zhou Z, Jia B, Wang N, Wang X and Li Y 2023 Phys. Rev. Lett. 130 116101
[44] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[45] Xie Y, Wang W, Chen H, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553
[46] Mei J and Wu Y 2014 New J. Phys. 16 123007
[47] Qian E, Fu Y, Xu Y and Chen H 2016 Europhys. Lett. 114 34003
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
[4] Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves
Ma Yan-Bing (马岩冰), Zhang Huai-Wu (张怀武), Li Yuan-Xun (李元勋), Wang Yi-Cheng (王艺程), Lai Wei-En (赖伟恩), Li Jie (李颉). Chin. Phys. B, 2014, 23(5): 058102.
[5] Prediction of heat transfer of nanofluid on critical heat flux based on fractal geometry
Xiao Bo-Qi (肖波齐). Chin. Phys. B, 2013, 22(1): 014402.
No Suggested Reading articles found!