Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030505    DOI: 10.1088/1674-1056/acf281
GENERAL Prev   Next  

Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption

Xiaoxia Li(李晓霞)1,2,†, Qianqian He(何倩倩)1,2,3, Tianyi Yu(余天意)1,2, Zhuang Cai(才壮)1,2, and Guizhi Xu(徐桂芝)1,2
1 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China;
2 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
3 School of Life Science & Health Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits. This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network (HNN) with coupled hyperbolic memristors through the modification of a single coupling connection weight. The bistable mode of the hyperbolic memristive HNN (mHNN), characterized by the coexistence of asymmetric chaos and periodic attractors, is effectively demonstrated through the utilization of conventional nonlinear analysis techniques. These techniques include bifurcation diagrams, two-parameter maximum Lyapunov exponent plots, local attractor basins, and phase trajectory diagrams. Moreover, an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors. This method demonstrates significant benefits in correlation, information entropy, and resistance to differential attacks, providing strong evidence for its effectiveness in encryption. Additionally, an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN. The correctness of the circuit design is confirmed through Multisim simulations, which align with numerical simulations conducted in Matlab.
Keywords:  hyperbolic-type memristor      Hopfield neural network (HNN)      asymmetric attractors      image encryption  
Received:  20 June 2023      Revised:  16 August 2023      Accepted manuscript online:  22 August 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Nature Science Foundation of China (Grant Nos. 51737003 and 51977060) and the Natural Science Foundation of Hebei Province (Grant No. E2011202051).
Corresponding Authors:  Xiaoxia Li     E-mail:  lixiaoxia@hebut.edu.cn

Cite this article: 

Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝) Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption 2024 Chin. Phys. B 33 030505

[1] Xu Q, Chen X and Chen B 2023 Nonlinear Dyn. 111 8737
[2] Ma J 2023 Journal of Zhejiang University-SCIENCE A 24 109
[3] Müller E J, Munn B R and Shine J M 2020 Nat. Commun. 11 6337
[4] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[5] Hu T, Zhang J and Wang J 2023 Journal of Medicinal Chemistry 66 4434
[6] Fusar-Poli P, de Pablo G S and Correll C U 2020 JAMA Psychiatry 77 755
[7] Dai Z, Lin Q and Li T 2019 Neurobiology of Aging 75 71
[8] Wen Z, Wang C and Deng Q 2022 Nonlinear Dyn. 110 3823
[9] Li Z, Zhou H and Wang M 2021 Nonlinear Dyn. 104 1455
[10] Chen M, Qi J W and Wu H G 2020 Science China Technological Sciences 63 1035
[11] Yu Y, Shi M and Kang H 2020 Nonlinear Dyn. 100 891
[12] Qi G, Wu Y and Hu J 2021 International Journal of Bifurcation and Chaos 31 2150170
[13] Wouapi M K, Fotsin B H and Ngouonkadi E B M 2021 Cognitive Neurodynamics 15 315
[14] Xu Q, Liu T and Feng C T 2021 Chin. Phys. B 30 128702
[15] Hopfield J J 1984 Proc. Natl. Acad. Sci. USA 81 3088
[16] Ding S, Wang N and Bao H 2023 Chaos, Solitons & Fractals 166 112899
[17] Chen L, Yin H and Huang T 2020 Neural Networks 125 174
[18] Doubla I S, Ramakrishnan B and Tabekoueng Z N 2022 Euro. Phys. J. Spec. Top. 231 2371
[19] Wan Q, Li F and Chen S 2023 Chaos, Solitons & Fractals 169 113259
[20] Hu Z and Wang C 2024 Multimedia Tools and Applications 83 97
[21] Strukov D B, Snider G S and Stewart D R 2008 Nature 453 80
[22] Zhang S, Zheng J and Wang X 2021 Chaos 31 011101
[23] Chen C and Min F 2022 Euro. Phys. J. Plus 137 841
[24] Leng Y, Yu D and Hu Y 2020 Chaos 30 033108
[25] Ding D, Xiao H and Yang Z 2022 Nonlinear Dyn. 108 4433
[26] Mondal A, Upadhyay R K and Ma J 2019 Cognitive Neurodynamics 13 393
[27] Qiao S and An X L 2021 Pramana 95 72
[28] Ma J, Zhang G and Hayat T 2019 Nonlinear Dyn. 95 1585
[29] Li J, Liu S and Liu W 2016 Nonlinear Dyn. 83 801
[30] Lin H, Wang C, Yu F, Hong Q, Xu C and Sun Y 2023 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 4948
[31] Lin H, Wang C and Yu F 2023 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
[32] Ma T, Mou J and Yan H 2022 Euro. Phys. J. Plus 137 1
[33] Parastesh F, Jafari S and Azarnoush H 2019 Euro. Phys. J. Spec. Top. 228 2023
[34] Zhang S, Zheng J and Wang X 2020 Nonlinear Dyn. 102 2821
[35] Yu F, Zhang Z and Shen H 2022 Chin. Phys. B 31 020505
[36] Gong L H, Luo H X and Wu R Q 2022 Physica A 591 126793
[37] Gong L H and Luo H X 2023 Optics & Laser Technology 167 109665
[38] Zhou N R, Tong L J and Zou W P 2023 Signal Processing 211 109107
[39] Su Y, Wang X and Lin S 2022 Chin. Phys. B 31 110503
[40] Lai Q, Lai C and Zhang H 2022 Chaos Solitons Fractals 158 112017
[41] Liu L, Zhang L and Jiang D 2019 IEEE Access 7 185796
[42] Tlelo-Cuautle E, Díaz-Muñoz J D and González-Zapata 2020 Sensors 20 1326
[43] Yu F, Kong X and Mokbel A A M 2022 IEEE Transactions on Circuits and Systems II Express Briefs 70 326
[44] Njitacke Z T, Isaac S D and Nestor T 2021 Neural Comput. Appl. 33 6733
[45] Yu F, Shen H, Yu Q, et al 2022 IEEE Transactions on Network Science and Engineering 10 845
[46] Shen H, Yu F and Kong X 2022 Chaos 32 083133
[47] Njitacke Z T, Kengne J and Fotsin H B 2019 International Journal of Dyn. and Control 7 36
[48] Lin H, Wang C and Chen C 2021 IEEE Trans Circuits Syst. I 68 3397
[49] Bao H, Hu A and Liu W 2019 IEEE transactions on neural networks and learning systems 31 502
[50] Bao H, Chen Z G and Cai J M 2022 Science China Technological Sciences 65 2582
[1] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[2] Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星). Chin. Phys. B, 2024, 33(3): 034204.
[3] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[4] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[5] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[6] Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[7] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[8] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[9] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[10] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[11] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[12] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[13] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
No Suggested Reading articles found!