Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 026701    DOI: 10.1088/1674-1056/ad0cc8
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Magnetic field regression using artificial neural networks for cold atom experiments

Ziting Chen(陈子霆), Kin To Wong(黃建陶), Bojeong Seo, Mingchen Huang(黄明琛), Mithilesh K. Parit, Yifei He(何逸飞), Haoting Zhen(甄浩廷), Jensen Li, and Gyu-Boong Jo
Department of Physics, The Hong Kong University of Science and Technology, Kowloon 999077, China
Abstract  Accurately measuring magnetic fields is essential for magnetic-field sensitive experiments in areas like atomic, molecular, and optical physics, condensed matter experiments, and other areas. However, since many experiments are often conducted in an isolated environment that is inaccessible to experimentalists, it can be challenging to accurately determine the magnetic field at the target location. Here, we propose an efficient method for detecting magnetic fields with the assistance of an artificial neural network (NN). Instead of measuring the magnetic field directly at the desired location, we detect fields at several surrounding positions, and a trained NN can accurately predict the magnetic field at the target location. After training, we achieve a below 0.3% relative prediction error of magnetic field magnitude at the center of the vacuum chamber, and successfully apply this method to our erbium quantum gas apparatus for accurate calibration of magnetic field and long-term monitoring of environmental stray magnetic field. The demonstrated approach significantly simplifies the process of determining magnetic fields in isolated environments and can be applied to various research fields across a wide range of magnetic field magnitudes.
Keywords:  ultracold gases      trapped gases      measurement methods and instrumentation  
Received:  07 August 2023      Revised:  16 October 2023      Accepted manuscript online:  16 November 2023
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  43.20.Ye (Measurement methods and instrumentation)  
Fund: Project supported by the RGC of China (Grant Nos. 16306119, 16302420, 16302821, 16306321, 16306922, C6009-20G, N-HKUST636-22, and RFS2122-6S04).
Corresponding Authors:  Gyu-Boong Jo     E-mail:  gbjo@ust.hk

Cite this article: 

Ziting Chen(陈子霆), Kin To Wong(黃建陶), Bojeong Seo, Mingchen Huang(黄明琛), Mithilesh K. Parit, Yifei He(何逸飞), Haoting Zhen(甄浩廷), Jensen Li, and Gyu-Boong Jo Magnetic field regression using artificial neural networks for cold atom experiments 2024 Chin. Phys. B 33 026701

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S and Salomon C 2004 Phys. Rev. Lett. 93 050401
[3] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[4] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[5] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[6] Kraemer T, Mark M, Waldburger P, et al. 2006 Nature 440 315
[7] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[8] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys. 72 126401
[9] Chomaz L, Ferrier-Barbut I, Ferlaino F, Laburthe-Tolra B, Lev B L and Pfau T 2022 Rep. Prog. Phys. 72
[10] Tranter A D, Slatyer H J, Hush M R, Leung A C, Everett J L, Paul K V, Vernaz-Gris P, Lam P K, Buchler B C and Campbell G T 2018 Nat. Commun. 9 4360
[11] Seo S, Lee J H, Lee S B, Park S E, Seo M H, Park J, Kwon T Y and Hong H G 2021 Opt. Express 29 35623
[12] Wigley P B, Everitt P J, van den Hengel A, et al. 2016 Sci. Rep. 6 25890
[13] Barker A J, Style H, Luksch K, Sunami S, Garrick D, Hill F, Foot C J and Bentine E 2020 Mach. Learn.: Sci. Technol. 1 015007
[14] Vendeiro Z, Ramette J, Rudelis A, Chong M, Sinclair J, Stewart L, Urvoy A and Vuletić V 2022 Phys. Rev. Res. 4 043216
[15] Davletov E, Tsyganok V, Khlebnikov V, Pershin D, Shaykin D and Akimov A 2020 Phys. Rev. A 102 011302
[16] Zhang Y, Mesaros A, Fujita K, et al. 2019 Nature 570 484
[17] Zhao E, Lee J, He C, Ren Z, Hajiyev E, Liu J and Jo G B 2021 Nat. Commun. 12 2011
[18] Zhao E, Mak T H, He C, Ren Z, Pak K K, Liu Y J and Jo G B 2022 Opt. Express 30 37786
[19] Guo S, Fritsch A R, Greenberg C, Spielman I B and Zwolak J P 2021 Mach. Learn.: Sci. Technol. 2 035020
[20] Seo B, Chen P, Chen Z, Yuan W, Huang M, Du S and Jo G B 2020 Phys. Rev. A 102 013319
[21] Seo B, Chen Z, Huang M, Parit M K, He Y, Chen P and Jo G B 2023 J. Korean Phys. Soc. 82 901
[22] Chen Z, Seo B, Huang M, Parit M K, Chen P and Jo G B 2021 Rev. Sci. Instrum. 92 123005
[23] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401
[24] Frisch A, Mark M, Aikawa K, Ferlaino F, Bohn J L, Makrides C, Petrov A and Kotochigova S 2014 Nature 507 475
[25] Pepper D W and Heinrich J C 2017 The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL (CRC press)
[26] Solin A, Kok M, Wahlström N, Schön T B and Särkkä S 2018 IEEE Trans. Robot. 34 1112
[27] Nouri N, Biswas A, Brown M, Carr R, Filippone B, Osthelder C, Plaster B, Slutsky S and Swank C 2015 J. Instrum. 10 P12003
[28] Nouri N and Plaster B 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 767 92
[29] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput. Phys. 378 686
[30] Coskun U H, Sel B and Plaster B 2022 Sci. Rep. 12 12858
[31] Abadi M, Agarwal A, Barham P, et al. 2016 arXiv: 1603.04467
[32] Paszke A, Gross S, Massa F, et al. 2019 Adv. Neural Inf. Proc. Syst. 32
[33] Xu C, Liu X, Xue F, Li Y, Qian W and Yu M 2018 Fusion Eng. Des. 133 12
[1] Dynamics of bubble-shaped Bose-Einstein condensates on two-dimensional cross-section in micro-gravity environment
Tie-Fu Zhang(张铁夫), Cheng-Xi Li(李成蹊), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(9): 090501.
[2] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[3] High efficient Raman sideband cooling and strong three-body recombination of atoms
Yuqing Li(李玉清), Zhennan Liu(刘震南), Yunfei Wang(王云飞), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Yongming Fu(付永明), Peng Li(李鹏), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103701.
[4] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[5] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[6] Collective modes of Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(11): 117201.
[7] Effects of transverse trapping on the ground state of a cigar-shaped two-component Bose–Einstein condensate
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(9): 096701.
No Suggested Reading articles found!