CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of transverse trapping on the ground state of a cigar-shaped two-component Bose–Einstein condensate |
Cui Guo-Dong (崔国栋)a b, Sun Jian-Fang (孙剑芳)a b, Jiang Bo-Nan (姜伯楠)a b, Qian Jun (钱军)a, Wang Yu-Zhu (王育竹)a |
a Key Laboratory for Quantum Optics, Center for Cold Atoms, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We derive the coupled nonpolynomial nonlinear Schrödinger equations for a two-component Bose-Einstein condensate in a quasi-one-dimension geometry and investigate the effects of a tightly transverse trapping on the ground state and the miscibility-immiscibility threshold. We find that the density profile of the matter wavepacket is remarkably dependent on the transverse width and the effective one-dimension nonlinear coupling strengths in miscible and immiscible regimes.
|
Received: 23 February 2013
Revised: 03 April 2013
Accepted manuscript online:
|
PACS:
|
67.60.Bc
|
(Boson mixtures)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
67.85.Bc
|
(Static properties of condensates)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104292) and the National Basic Research Program of China (Grant No. 2011CB921504). |
Corresponding Authors:
Qian Jun, Wang Yu-Zhu
E-mail: jqian@siom.ac.cn; yzwang@mail.shcnc.ac.cn
|
Cite this article:
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹) Effects of transverse trapping on the ground state of a cigar-shaped two-component Bose–Einstein condensate 2013 Chin. Phys. B 22 096701
|
[1] |
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[2] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[3] |
Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
|
[4] |
Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
|
[5] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[6] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
[7] |
Sanchez-Palencia L and Lewenstein M 2010 Nature Phys. 6 87
|
[8] |
Mewes M O, Andrews M R, Van Druten N J, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 416
|
[9] |
Görlitz A, Vogels J M, Leanhardt A E, Raman C, Gustavson T L, Abo-Shaeer J R, Chikkatur A P, Gupta S, Inouye S, Rosenband T and Ketterle W 2001 Phys. Rev. Lett. 87 130402
|
[10] |
Greiner M, Bloch I, Mandel O, Hänsch T W and Esslinger T 2001 Phys. Rev. Lett. 87 160405
|
[11] |
Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett. 87 080403
|
[12] |
Mateo A M and Delgado V 2008 Phys. Rev. A 77 013617
|
[13] |
Kamchatnov A M and Shchesnovich V S 2004 Phys. Rev. A 70 023604
|
[14] |
Massignan P and Modugno M 2003 Phys. Rev. A 67 023614
|
[15] |
Jackson A D, Kavoulakis G M and Pethick C J 1998 Phys. Rev. A 58 2417
|
[16] |
Salasnich L, Parola A and Reatto L 2002 Phys. Rev. A 65 043614
|
[17] |
Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
|
[18] |
Mertes K M, Merrill J W, Carretero-González R, Frantzeskakis D J, Kevrekidis P G and Hall D S 2007 Phys. Rev. Lett. 99 190402
|
[19] |
Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
|
[20] |
Modugno G, Modugno M, Riboli F, Roati G and Inguscio M 2002 Phys. Rev. Lett. 89 190404
|
[21] |
Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
|
[22] |
Ma X Q, Chen S, Yang F, Xia L, Zhou X J, Wang Y Q and Chen X Z 2005 Chin. Phys. Lett. 22 5
|
[23] |
Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
|
[24] |
Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
|
[25] |
Adhikari S K 2001 Phys. Rev. E 63 056704
|
[26] |
Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
|
[27] |
Kasamatsu K and Tsubota M 2006 Phys. Rev. A 74 013617
|
[28] |
Yan J R and Zhou J 2012 Chin. Phys. B 21 060304
|
[29] |
Wang Q, Wen L and Li Z D 2013 Chin. Phys. B 22 080501
|
[30] |
Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
|
[31] |
Salasnich L, Malomed B A and Toigo F 2008 Phys. Rev. A 77 035601
|
[32] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes (3rd edn.) (New York: Cambridge University Press)
|
[33] |
Nicklas E, Strobel H, Zibold T, Gross C, Malomed B A, Kevrekidis P G and Oberthaler M K 2011 Phys. Rev. Lett. 107 193001
|
[34] |
Widera A, Mandel O,Greiner M, Kreim S, Hänsch T W and Bloch I 2004 Phys. Rev. Lett. 92 160406
|
[35] |
Erhard M, Schmaljohann H, Kronjäger J, Bongs K and Sengstock K 2004 Phys. Rev. A 69 032705
|
[36] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|