Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 015204    DOI: 10.1088/1674-1056/acd7cb
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Fluid-chemical modeling of the near-cathode sheath formation process in a high current broken in DC air circuit breaker

Shi-Dong Peng(彭世东), Jing Li(李静), Wei Duan(段薇), Yun-Dong Cao(曹云东), Shu-Xin Liu(刘树鑫), and Hao Huang(黄浩)
Key Laboratory of Special Electric Machine and High Voltage Apparatus(College of Electrical Engineering), Shenyang University of Technology, Shenyang 110870, China
Abstract  When the contacts of a medium-voltage DC air circuit breaker (DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V—12.33 V drops along the 17 μm space charge layer away from the cathode (65.5 kV/m—72.5 kV/m) when the current varies from 20 kA—80 kA. The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core, but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.
Keywords:  near-cathode sheath      atmospheric pressure air arc      fluid-chemical model      high current      DC air circuit breaker (DCCB)  
Received:  12 February 2023      Revised:  10 May 2023      Accepted manuscript online:  23 May 2023
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51977132), Key Special Science and Technology Project of Liaoning Province (Grant No. 2020JH1/10100012), and General Program of the Education Department of Liaoning Province (Grant No. LJKZ0126).
Corresponding Authors:  Jing Li     E-mail:  lijing@sut.edu.cn

Cite this article: 

Shi-Dong Peng(彭世东), Jing Li(李静), Wei Duan(段薇), Yun-Dong Cao(曹云东), Shu-Xin Liu(刘树鑫), and Hao Huang(黄浩) Fluid-chemical modeling of the near-cathode sheath formation process in a high current broken in DC air circuit breaker 2024 Chin. Phys. B 33 015204

[1] Yang F, Wu Y, Rong M, Sun H, Murphy A B, Ren Z and Niu C 2013 J. Phys. D:Appl. Phys. 46 273001
[2] Kadivar A and Niayesh K 2020 Energies 13 4846
[3] Niu C, Ding J, Wu Y, Yang F, Dong D, Fan X and Rong M 2016 Plasma Sci. Technol. 18 241
[4] Li J, Qian Y, Wang A, Cao Y, Liu S and Yu L 2017 J. Phys. D:Appl. Phys. 50 385203
[6] Gonzalez J, Cayla F, Freton P and Teulet P 2009 J. Phys. D:Appl. Phys. 42 145204
[7] Niu C, Meng X, Huang H, Zhu T, Sun S and Wang H 2021 Plasma Sci. Technol. 23 104006
[8] Niu C, Sun S, Sun J and Wang H 2021 Chin. Phys. B 30 095206
[9] Lan C H, Long J D, Zheng L, Peng Y F, Li J, Yang Z and Dong P 2014 Chin. Phys. Lett. 31 105202
[10] Lowke J J, Morrow R and Haidar J 1997 J. Phys. D:Appl. Phys. 30 2033
[11] Eliseev S I, Kudryavtsev A A, Liu H, Ning Z, Yu D and Chirtsov A S 2016 IEEE Trans. Plasma Sci. 44 2536
[12] Khrabry A, Kaganovich I, Nemchinsky V and Khodak A 2018 Phys. Plasmas 25 013521
[13] Khrabry A, Kaganovich I, Nemchinsky V and Khodak A 2018 Phys. Plasmas 25 013522
[14] Baeva M, Loffhagen D and Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 1359
[15] Saifutdinov A 2021 J. Appl. Phys. 129 093302
[16] Flesch P and Neiger M 2005 J. Phys. D:Appl. Phys. 38 3098
[17] Tanaka Y, Michishita T and Uesugi Y 2005 Plasma Sources Sci. Technol. 14 134
[18] Benilov M S 1999 IEEE Trans. Plasma Sci. 27 1458
[19] Santos D, Lisnyak M and Benilov M 2019 J. Phys. D:Appl. Phys. 52 454003
[20] Cejas E, Prevosto L, Minotti F O, Ferreyra M, Chamorro J C and Fina B 2021 Phys. Plasmas 28 033506
[21] Khrabry A, Kaganovich I, Nemchinsky V and Khodak A 2018 Phys. Plasmas 25 013521
[22] Cagas P, Hakim A, Juno J and Srinivasan B 2017 Phys. Plasmas 24 022118
[23] Sun Q, Wang C, Chen T and Xia W D 2017 J. Phys. D:Appl. Phys. 50 425202
[24] Benilov M S, Carpaij M and Cunha M D 2006 J. Phys. D:Appl. Phys. 39 2124
[25] Benilov M 2007 J. Phys. D:Appl. Phys. 40 1376
[26] Benilov M and Faria M 2007 J. Phys. D:Appl. Phys. 40 5083
[27] Benilov M and Cunha M 2013 J. Appl. Phys. 113 063301
[28] Benilov M, Almeida N, Baeva M, Cunha M, Benilova L and Uhrlandt D 2016 J. Phys. D:Appl. Phys. 49 215201
[29] Benilov M, Benilova L, Li H P and Wu G Q 2012 J. Phys. D:Appl. Phys. 45 355201
[30] Murphy A B 2015 Plasma Chem. Plasma Process. 35 471
[31] Ni G H, Meng Y D, Cheng C and Lan Y 2010 Chin. Phys. Lett. 27 55203
[32] Lin Q, Zhao Y, Duan W, Ni G, Jin X, Sui S, Xie H and Meng Y 2019 Chin. Phys. B 28 125205
[33] Li P, Hershkowitz N, Wackerbarth E and Severn G 2020 Plasma Sources Sci. Technol. 29 025015
[34] Cai B H, Song H M, Jia M, Wu Y, Cui W and Huang S F 2020 Chin. Phys. B 29 065207
[35] Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y and Kang P C 2018 Acta Phys. Sin. 67 075201 (in Chinese)
[36] Baeva M, Boretskij V, Gonzalez D, Methling R, Murmantsev O, Uhrlandt D and Veklich A 2020 J. Phys. D:Appl. Phys. 54 025203
[37] Lazarou C, Koukounis D, Chiper A, Costin C, Topala I and Georghiou G E 2015 Plasma Sources Sci. Technol. 24 035012
[38] Lazarou C, Belmonte T, Chiper A and Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023
[39] Wu F, Liao R, Yang L, Liu X, Wang K and Zhou Z 2020 J. Phys. D:Appl. Phys. 53 345202
[42] Murakami T, Niemi K, Gans T, O'Connell D and Graham W G 2012 Plasma Sources Sci. Technol. 22 015003
[43] Baeva M, Loffhagen D, Becker M and Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 949
[44] Yang F, Ma R, Wu Y, Sun H, Niu C and Rong M 2012 Plasma Sci. Technol. 14 167
[45] Peng S, Li J, Cao Y, Huang C and Liu S 2022 Plasma Sci. Technol. 24 114002
[46] Tonks L and Langmuir I 1929 Phys. Rev. 34 876
[47] Franklin R 2003 J. Phys. D:Appl. Phys.36 R309
[48] Wang L, Yan C, Yang Z, Zhang T, Wang K and Jia S 2020 Phys. Plasmas 27 083506
[49] Sakiyama Y, Graves D B, Chang H W, Shimizu T and Morfill G E 2012 J. Phys. D:Appl. Phys. 45 425201
[50] Murphy A B and Uhrlandt D 2018 Plasma Sources Sci. Technol. 27 063001
[51] Wang L, Jia S, Shi Z and Rong M 2006 J. Appl. Phys. 100 113304
[52] Sun H, Wu Y, Tanaka Y, Tomita K and Rong M 2018 J. Phys. D:Appl. Phys. 52 075202
[53] Zhang Y, Zeng R, Li X, Luo B and Zhang B 2019 Chin. Phys. B 28 025202
[55] Baeva M, Zhu T, Kewitz T, Testrich H and Foest R 2021 J. Therm. Spray Technol. 30 1737
[56] Liu H, Li M, Ning Z, Ren J, Tang H, Yu D, Demidov E V, Eliseev S I and Kudryavtsev A A 2015 IEEE Trans. Plasma Sci. 43 4024
[57] Zhao Y F, Wang C, Wang Z W, Li L, Sun H, Shao T and Pan J 2018 Acta Phys. Sin. 67 085202 (in Chinese)
[58] Hagelaar G and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[59] Boulos M I, Fauchais P and Pfender E 1994 Thermal Plasmas vol. 1 (Springer Science & Business Media)
[60] Coulombe S and Meunier J L 1997 J. Phys. D:Appl. Phys. 30 776
[61] Herring C and Nichols M 1949 Rev. Mod. Phys. 21 185
[62] Fowler R H and Nordheim L 1956 Phys. Rev. 102 1464
[64] Christov S 1966 Phys. Status Solidi B 17 11
[65] Christov S and Vodenicharov C 1968 Solid-State Electron. 11 757
[66] Monnier A, Froidurot B, Jarrige C, Test P and Meyer R 2007 IEEE Trans. Compon. Packag. Technol. 30 787
[67] Landfried R, Leblanc T, Kirkpatrick M and Teste P 2012 IEEE Trans. Plasma Sci. 40 1205
[68] Plasma data exchange project
[69] Ning W, Dai D, Zhang Y, Han Y and Li L 2018 J. Phys. D:Appl. Phys. 51 125204
[70] Zhao D, Sun Z, Sun X, Sun H and Han B 1992 Plasma Sources Sci. Technol. 1 207
[72] Comsol multiphysics
[73] Panua-pardiso solver project
[74] Inada Y, Matsuoka S, Kumada A, Ikeda H and Hidaka K 2012 J. Phys. D:Appl. Phys. 45 435202
[75] Drummond J E 2013 Plasma physics(Courier Corporation)
[76] Fulcheri L, Rohani V, Fabry F and Traisnel N 2010 Plasma Sources Sci. Technol. 19 045010
[77] Fridman A 2008 Plasma Chemistry(Cambridge University Press)
[78] Almeida N, Benilov M and Naidis G 2008 J. Phys. D:Appl. Phys. 41 245201
[79] Yang Z, Wang L, Zhang Z, Chen J and Gortschakow S 2022 J. Phys. D:Appl. Phys. 55 415201
[80] Zhu S and Engel A 1981 J. Phys. D:Appl. Phys. 14 2225
[81] Baeva M, Benilov M, Almeida N and Uhrlandt D 2016 J. Phys. D:Appl. Phys. 49 245205
[82] McBride J W, Pechrach K and Weaver P M 2002 IEEE Trans. Compon. Pack. Technol. 25 427
[83] McBride J W and Jeffery P A 1999 IEEE Trans. Compon. Pack. Technol. 22 38
[84] Kaufmann H, Cunha M, Benilov M, Hartmann W and Wenzel N 2017 J. Appl. Phys. 122 163303
[85] Huo J, Ronzello J, Rontey A, Wang Y, Jacobs L, Sommerer T and Cao Y 2020 AIP Adv. 10 085324
[1] A novel 4H-SiC lateral bipolar junction transistor structure with high voltage and high current gain
Deng Yong-Hui (邓永辉), Xie Gang (谢刚), Wang Tao (汪涛), Sheng Kuang (盛况). Chin. Phys. B, 2013, 22(9): 097201.
[2] Microstructure and properties of Nb/Ta multilayer films irradiated by high current pulse electron beam
Ma Xin-Xin (马欣新), Guo Guang-Wei (郭光伟), Tang Guang-Ze (唐光泽), Sun Ming-Ren (孙明仁), Wang Li-Qin (王黎钦). Chin. Phys. B, 2013, 22(5): 056202.
No Suggested Reading articles found!