Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100309    DOI: 10.1088/1674-1056/acb914
GENERAL Prev   Next  

A quantum algorithm for Toeplitz matrix-vector multiplication

Shang Gao(高尚) and Yu-Guang Yang(杨宇光)
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Abstract  Toeplitz matrix-vector multiplication is widely used in various fields, including optimal control, systolic finite field multipliers, multidimensional convolution, etc. In this paper, we first present a non-asymptotic quantum algorithm for Toeplitz matrix-vector multiplication with time complexity ${\cal O}(\kappa \mathrm{polylog}n)$, where $\kappa $ and $2n$ are the condition number and the dimension of the circulant matrix extended from the Toeplitz matrix, respectively. For the case with an unknown generating function, we also give a corresponding non-asymptotic quantum version that eliminates the dependency on the $L_{1}$-norm $\varrho $ of the displacement of the structured matrices. Due to the good use of the special properties of Toeplitz matrices, the proposed quantum algorithms are sufficiently accurate and efficient compared to the existing quantum algorithms under certain circumstances.
Keywords:  quantum algorithm      Toeplitz matrix-vector multiplication      circulant matrix  
Received:  03 November 2022      Revised:  18 January 2023      Accepted manuscript online:  06 February 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Fd (Algebraic methods)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62071015 and 62171264).
Corresponding Authors:  Yu-Guang Yang     E-mail:  yangyang7357@bjut.edu.cn

Cite this article: 

Shang Gao(高尚) and Yu-Guang Yang(杨宇光) A quantum algorithm for Toeplitz matrix-vector multiplication 2023 Chin. Phys. B 32 100309

[1] Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, November 20-22, 1994, Washington, USA, p. 124
[2] Gover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, May 22-24, 1996, Philadelphia, USA, p. 212
[3] Brandao F G S L and Svore K M 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, October 15-17, 2017, California, USA, p. 415
[4] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[5] Kerenidis I and Landman J 2021 Phys. Rev. A 103 042415
[6] Kerenidis I, Landman J, Luongo A and Prakash A 2019 33rd Conference on Neural Information Processing Systems, December, 8-14, 2019, Vancouver, Canada, p. 4134
[7] Lloyd S, Garnerone S and Zanardi P 2016 Nat. Phys. 7 10138
[8] Lloyd S, Mohseni M and Rebentrost P 2014 Nat. Phys. 10 631
[9] Yu C H, Gao F, Lin S and Wang J 2019 Quantum Inf. Process. 18 249
[10] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[11] Yu C H, Gao F, Wang Q L and Wen Q Y 2016 Phys. Rev. A 94 042311
[12] Duan B, Yuan J, Xu J and Li D 2019 Phys. Rev. A 99 032311
[13] Pan S J, Wan L C, Liu H L, Wang Q L, Qin S J, Wen Q Y and Gao F 2020 Phys. Rev. A 102 052402
[14] Gao S and Yang Y G 2022 Phys. Scr. 98 010001
[15] Yu C H, Gao F, Liu C, Huynh D, Reynolds M and Wang J B 2019 Phys. Rev. A 99 022301
[16] Gao S, Pan S J and Yang Y G 2023 Sci. China Inf. Sci. 66 129501
[17] Li Z Q, Cai B B, Sun H W, Wan L C, Qin S J, Wen Q Y and Gao F 2022 Sci. China-Phys. Mech. Astron. 65 290311
[18] Baros S, Chang C Y, Colon-Reyes G E and Bernstein A 2022 Automatica 138 109926
[19] Cariow A and Gliszczyński M 2012 Elec. Rev. 88 166
[20] Cenk M, Negre C and Hasan M A 2012 IEEE T. Comput. 62 1345
[21] Glentis G O and Jakobsson A 2011 IEEE T. Signal Proces. 59 4154
[22] Hasan M A, Meloni N, Namin A H and Negre C 2010 IEEE T. Comput. 61 151
[23] Hasan M A and Negre C 2012 IEEE T. Comput. 62 1467
[24] Li S W, Jiang Q B, Zhao Q J, Lu L and Feng Z L 2020 Front. Inform. Technol. Electron. Eng. 21 1467
[25] Medišauskas L, Saalmann U and Rost J M 2018 J. Phys. B: At. Mol. Opt. Phys. 52 015602
[26] Pan J S, Lee C Y, Sghaier A, Zeghid M, and Xie J F 2019 IEEE T. VLSI Syst. 27 1614
[27] Rakhuba M V and Oseledets I V 2015 SIAM J. Sci. Comput. 37 A565
[28] Taşkin H K and Cenk M 2018 Proceedings of the Fifth Workshop on Cryptography and Security in Computing Systems, January 24, 2018, Manchester, UK, p. 1
[29] Ye K and Lim L H 2016 IEEE Information Theory Workshop (ITW) 310
[30] Wan L C, Yu C H, Pan S J, Gao F, Wen Q Y and Qin S J 2018 Phys. Rev. A 97 062322
[31] Wan L C, Yu C H, Pan S J, Qian S J, Gao F and Wen Q Y 2021 Phys. Rev. A 104 062414
[32] Gray R 1972 IEEE T. Inform. Theory 18 725
[33] Serra S 1998 Linear Algebra Appl. 270 109
[34] Russell D C, Grenander U and Szegö G 1959 Proceedings of the Edinburgh Mathematical Society (University of California Press, 1958) p. 246
[35] Chan R H and Ng M K 1996 SIAM Rev. 38 427
[36] Gray R M 2006 Foundations and TrendsoledR in Communications and Information Theory 2 155
[37] Nielsen M A and Chuang I 2002 Quantum Computation and Quantum Information 10th Ed. (Cambridge: Cambridge University Press) p. 216
[38] Giovannetti V, Lloyd S and Maccone L 2008 Phys. Rev. Lett. 100 160501
[39] Kerenidis I and Prakash A 2016 arXiv preprint arXiv:1603.08675
[40] Brassard G, Hoyer P, Mosca M and Tapp A 2002 Contemporary Mathematics 305 53
[41] Zhou S S and Wang J B 2017 Roy. Soc. Open Sci. 4 160906
[1] Variational quantum simulation of the quantum critical regime
Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2023, 32(8): 080305.
[2] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[5] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[6] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[7] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[8] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[9] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[10] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
[11] Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state
Wang Hong-Fu(王洪福) and Zhang Shou(张寿). Chin. Phys. B, 2009, 18(7): 2642-2648.
[12] A hybrid quantum encoding algorithm of vector quantization for image compression
Pang Chao-Yang (庞朝阳), Zhou Zheng-Wei(周正威), and Guo Guang-Can(郭光灿). Chin. Phys. B, 2006, 15(12): 3039-3043.
No Suggested Reading articles found!