Abstract A new configuration of magnetic field (NCMF) in black hole (BH) magnetosphere is proposed by considering the effects of the screw instability. Three mechanisms of extracting energy magnetically are involved in the NCMF: (1) the Blandford—Znajek (BZ) process; (2) the magnetic coupling (MC) process; (3) a new scenario (henceforth the DL process) for extracting rotational energy from the disc, which is related to the open field lines connecting the disc with the astrophysical load. The expressions for the powers and torques of the above energy mechanisms are derived by using two kinds of the equivalent circuits. It turns out that the power and efficiency of extracting energy magnetically from the BH accretion disc are all augmented in the NCMF. It is shown that a very steep emissivity can be produced in a NCMF, which is consistent with the recent XMM-Newton observation of the nearby bright Seyfert 1 galaxy MCG-6-30-15.
Received: 21 April 2004
Revised: 31 October 2004
Accepted manuscript online:
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10173004, 10373006 and 10121503).
Cite this article:
Ye Yong-Chun (叶永春), Wang Ding-Xiong (汪定雄), Gong Xiao-Long (龚小龙) Magnetic extraction of energy from black hole accretion disc and its application to astrophysics 2005 Chinese Physics 14 439
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.