Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 073401    DOI: 10.1088/1674-1056/acbc69
DATA PAPER Prev   Next  

Absolute dielectronic recombination rate coefficients of highly charged ions at the storage ring CSRm and CSRe

Zhongkui Huang(黄忠魁)1,2,†, Shuxing Wang(汪书兴)3,†, Weiqiang Wen(汶伟强)1,2,‡, Hanbing Wang(汪寒冰)1,2, Wanlu Ma(马万路)3, Chongyang Chen(陈重阳)4, Chunyu Zhang(张春雨)4, Dongyang Chen(陈冬阳)2, Houke Huang(黄厚科)2, Lin Shao(邵林)2, Xin Liu(刘鑫)1,4, Xiaopeng Zhou(周晓鹏)1,2, Lijun Mao(冒立军)1,2, Jie Li(李杰)1, Xiaoming Ma(马晓明)1, Meitang Tang(汤梅堂)1, Jiancheng Yang(杨建成)1,2, Youjin Yuan(原有进)1,2, Shaofeng Zhang(张少锋)1,2, Linfan Zhu(朱林繁)3,§, and Xinwen Ma(马新文)1,2,¶
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
4 Shanghai EBIT Laboratory, Institute of Modern Physics, Fudan University, and the Key Laboratory of Applied Ion Beam Physics, Chinese Ministry of Education, Shanghai 200433, China
Abstract  Dielectronic recombination (DR) is one of the dominant electron-ion recombination mechanisms for most highly charged ions (HCIs) in cosmic plasmas, and thus, it determines the charge state distribution and ionization balance therein. To reliably interpret spectra from cosmic sources and model the astrophysical plasmas, precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources. The main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe) at the Heavy-Ion Research Facility in Lanzhou (HIRFL) are both equipped with electron cooling devices, which provide an excellent experimental platform for electron-ion collision studies for HCIs. Here, the status of the DR experiments at the HIRFL-CSR is outlined, and the DR measurements with Na-like Kr25+ ions at the CSRm and CSRe are taken as examples. In addition, the plasma recombination rate coefficients for Ar12+, 14+, Ca14+, 16+, 17+, Ni19+, and Kr25+ ions obtained at the HIRFL-CSR are provided. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.
Keywords:  dielectronic recombination      storage ring      highly charged ion      electron cooling      precision spectroscopy  
Received:  06 December 2022      Revised:  24 January 2023      Accepted manuscript online:  16 February 2023
PACS:  34.80.Lx (Recombination, attachment, and positronium formation)  
  36.20.Kd (Electronic structure and spectra)  
  95.30.Dr (Atomic processes and interactions)  
  98.58.Bz (Atomic, molecular, chemical, and grain processes)  
Fund: This work was partly supported by the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and 12104437) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34020000). We thank S. Schippers for fruitful discussions on the data analysis. W. Q. Wen acknowledges the support of the Youth Innovation Promotion Association CAS. The authors are deeply grateful to the staff of the Accelerator Department for the smooth running of the CSR accelerator complex.
Corresponding Authors:  Weiqiang Wen, Linfan Zhu, Xinwen Ma     E-mail:  wenweiqiang@impcas.ac.cn;lfzhu@ustc.edu.cn;x.ma@impcas.ac.cn

Cite this article: 

Zhongkui Huang(黄忠魁), Shuxing Wang(汪书兴), Weiqiang Wen(汶伟强), Hanbing Wang(汪寒冰), Wanlu Ma(马万路), Chongyang Chen(陈重阳), Chunyu Zhang(张春雨), Dongyang Chen(陈冬阳), Houke Huang(黄厚科), Lin Shao(邵林), Xin Liu(刘鑫), Xiaopeng Zhou(周晓鹏), Lijun Mao(冒立军), Jie Li(李杰), Xiaoming Ma(马晓明), Meitang Tang(汤梅堂), Jiancheng Yang(杨建成), Youjin Yuan(原有进), Shaofeng Zhang(张少锋), Linfan Zhu(朱林繁), and Xinwen Ma(马新文) Absolute dielectronic recombination rate coefficients of highly charged ions at the storage ring CSRm and CSRe 2023 Chin. Phys. B 32 073401

[1] Müller A 2008 Advances in Atomic, Molecular, and Optical Physics 55 293
[2] Müller A 2015 Atoms 3 120
[3] Burgess A 1964 Astrophys. J. 139 776
[4] Gu M F 2008 Can. J. Phys. 86 675
[5] Chen W D, Xiao J, Shen Y, Fu Y Q, Meng F C, Chen C Y, Zhang B H, Tang Y J, Hutton R and Zou Y 2008 Phys. Plasma 15 083301
[6] Badnell N R 2011 Computer Physics Communications 182 1528
[7] Fritzsche S 2021 A&A 656 A163
[8] Ferland G J 2003 Annu. Rev. Astron. Astrophys. 41 517
[9] Chakravorty S, Kembhavi A K, Elvis M, Ferland G and Badnell N R 2008 Monthly Notices of the Royal Astronomical Society: Letters 384 L24
[10] Badnell N R, O'Mullane M G, Summers H P, Altun Z, Bautista M A, Colgan J, Gorczyca T W, Mitnik D M, Pindzola M S and Zatsarinny O 2003 A&A 406 1151
[11] Schippers S, Schnell M, Brandau C, Kieslich S, Müller A and Wolf A 2004 A&A 421 1185
[12] Krantz C, Badnell N R, Müller A, Schippers S and Wolf A 2017 J. Phys. B: At. Mol. Opt. Phys. 50 052001
[13] Belic D S, Dunn G H, Morgan T J, Mueller D W and Timmer C 1983 Phys. Rev. Lett. 50 339
[14] Dittner P F, Datz S, Miller P D, Moak C D, Stelson P H, Bottcher C, Dress W B, Alton G D, Nešković N and Fou C M 1983 Phys. Rev. Lett. 51 31
[15] Andersen L H, Hvelplund P, Knudsen H and Kvistgaard P 1989 Phys. Rev. Lett. 62 2656
[16] Schippers S 2015 Nucl. Instrum. Methods B 350 61
[17] Brandau C, Kozhuharov C, Lestinsky M, Müller A, Schippers S and Stöhlker T 2015 Phys. Scr. 2015 014022
[18] Schuch R and Böhm S 2007 J. Phys. Conf. Ser. 88 012002
[19] Brandau C and Kozhuharov C 2012 Atomic Processes in Basic and Applied Physics 283-306
[20] Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W and Ma X 2015 Phys. Scr. T166 014023
[21] Mahmood S, Huang Z K, Wen W Q, et al. 2020 J. Phys. B 53 085004
[22] Huang Z K, Wang S X, Wen W Q, et al. 2020 X-Ray Spectrometry 49 155
[23] Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser. 235 2
[24] Wen W Q, Huang Z K, Wang S X,et al. 2020 Astrophys. J. 905 36
[25] Wang S, Xu X, Huang Z, Wen W, Wang H, Khan N, Preval S, Badnell N, Schippers S and Mahmood S 2018 Astrophys. J. 862 134
[26] Khan N, Huang Z K, Wen W Q, et al. 2022 J. Phys. B: At., Mol. Opt. Phys. 55 035001
[27] Khan N, Huang Z K, Wen W Q, Mahmood S, Dou L J, Wang S X, Xu X, Wang H B, Chen C Y and Chuai X Y 2018 Chin. Phys. C 42 064001
[28] Wang S X, Huang Z K, Wen W Q, et al. 2019 A&A 627 A171
[29] Huang Z K, Wen W Q, Wang S X, et al. 2020 Phys. Rev. A 102 062823
[30] Huang Z K, Khan N, Wang S X, et al. 2022 Nucl. Instrum. Methods A 1040 167286
[31] Xu X, Wang S X, Huang Z K, et al. 2018 Chin. Phys. B 27 063402
[32] Wen W Q, Ma X, Xu W Q, et al. 2013 Nucl. Instrum. Methods B 317 731
[33] Schippers S, Bartsch T, Brandau C, Müller A, Gwinner G, Wissler G, Beutelspacher M, Grieser M, Wolf A and Phaneuf R A 2000 Phys. Rev. A 62 022708
[34] Bethe H A and Salpeter E E 1957 Atoms I / Atome I 88-436
[35] Gu M F 2003 Astrophys. J. 590 1131
[36] Cowan R D 1981 The theory of atomic structure and spectra
[37] Fogle M, Badnell N R, Glans P, Loch S D, Madzunkov S, Abdel-Naby S A, Pindzola M S and Schuch R 2005 A&A 442 757
[38] Schippers S, Muller A, Gwinner G, Linkemann J, Saghiri A A and Wolf A 2001 Astrophys. J. 555 1027
[39] Savin D W 2005 AIP Conf. Proc. 774 297
[40] Altun Z, Yumak A, Badnell N R, Loch S D and Pindzola M S 2006 A&A 447 1165
[41] Kallman T and Bautista M 2001 The Astrophysical Journal Supplement Series 133 221
[42] Bryans P, Landi E and Savin D W 2009 The Astrophysical Journal 691 1540
[43] Yang J C, Xia J W, Xiao G Q, et al. 2013 Nucl. Instrum. Methods B. 317 263
[1] Theoretical study of electron-impact broadening for highly charged Ar XV ion lines
Chao Wu(吴超), Xiang Gao(高翔), Yu-Hao Zhu(朱宇豪), Xiao-Ying Han(韩小英), Bin Duan(段斌),Ju Meng(孟举), Song-Bin Zhang(张松斌), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2023, 32(5): 053101.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] Enhancement of electron-ion recombination rates at low energy range in the heavy ion storage ring CSRm
Nadir Khan, Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Shu-Xing Wang(汪书兴), Han-Bing Wang(汪寒冰), Wan-Lu Ma(马万路), Xiao-Long Zhu(朱小龙), Dong-Mei Zhao(赵冬梅), Li-Jun Mao(冒立军), Jie Li(李杰), Xiao-Ming Ma(马晓明), Mei-Tang Tang(汤梅堂), Da-Yu Yin(殷达钰), Wei-Qing Yang(杨维青), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Lin-Fan Zhu(朱林繁), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(3): 033401.
[4] Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas
L Wu(吴磊), M G Su(苏茂根), Q Min(敏琦), S Q Cao(曹世权), S Q He(何思奇), D X Sun(孙对兄), C Z Dong(董晨钟). Chin. Phys. B, 2019, 28(7): 075201.
[5] Investigations of the dielectronic recombination of phosphorus-like tin at CSRm
Xin Xu(许鑫), Shu-Xing Wang(汪书兴), Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Han-Bing Wang(汪寒冰), Tian-Heng Xu(徐天衡), Xiao-Ya Chuai(啜晓亚), Li-Jun Dou(豆丽君), Wei-Qing Xu(徐卫青), Chong-Yang Chen(陈重阳), Chuan-Ying Li(李传莹), Jian-Guo Wang(王建国), Ying-Long Shi(师应龙), Chen-Zhong Dong(董晨钟), Li-Jun Mao(冒立军), Da-Yu Yin(殷达钰), Jie Li(李杰), Xiao-Ming Ma(马晓明), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Xin-Wen Ma(马新文), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(6): 063402.
[6] Precision spectroscopy with a single 40Ca+ ion in a Paul trap
Guan Hua (管桦), Huang Yao (黄垚), Liu Pei-Liang (刘培亮), Bian Wu (边武), Shao Hu (邵虎), Gao Ke-Lin (高克林). Chin. Phys. B, 2015, 24(5): 054213.
[7] Charge state effect on the K-shell ionization of iron by xenon ions near the Bohr velocity
Zhou Xian-Ming (周贤明), Zhao Yong-Tao, Ren Jie-Ru (任洁茹), Cheng Rui (程锐), Lei Yu (雷瑜), Sun Yuan-Bo (孙渊博), Xu Ge (徐戈), Wang Yu-Yu (王瑜玉), Liu Shi-Dong (刘世东), Xiao Guo-Qing (肖国青). Chin. Phys. B, 2013, 22(11): 113402.
[8] Peripheral collisions of highly charged ions with metal clusters
Zhang Cheng-Jun(张成俊), Hu Bi-Tao(胡碧涛), and Luo Xian-Wen(罗先文) . Chin. Phys. B, 2012, 21(5): 053601.
[9] Dielectronic recombination and resonant transfer excitation processes for helium-like krypton
Hu Xiao-Li (胡骁骊), Qu Yi-Zhi (屈一至), Zhang Song-Bin (张松斌), Zhang Yu (张宇). Chin. Phys. B, 2012, 21(10): 103401.
[10] KLL dielectronic recombination process of He-like to O-like xenon ions
Zhang Deng-Hong(张登红), Shi Ying-Long(师应龙), Jiang Jun(蒋军), Dong Chen-Zhong(董晨钟), and Fumihiro Koike(小池文博) . Chin. Phys. B, 2012, 21(1): 013402.
[11] The KLL dielectronic recombination processes for highly charged krypton, iodine and barium ions
Yang Jian-Hui(杨建会), Zhang Hong(张红), and Cheng Xin-Lu(程新路). Chin. Phys. B, 2010, 19(6): 063201.
[12] Dielectronic recombination of Co-like tantalum
Zhou Li(周莉), Meng Fan-Chang(孟凡昌), Huang Min(黄敏), Chen Chong-Yang(陈重阳), and Wang Yan-Sen(王炎森). Chin. Phys. B, 2009, 18(8): 3409-3413.
[13] The effect of configuration complex on dielectronic recombination process in highly ionized plasmas
Jiao Rong-Zhen(焦荣珍) and Feng Chen-Xu(冯晨旭) . Chin. Phys. B, 2008, 17(5): 1845-1847.
[14] Ionization and single electron capture in collision of highly charged Ar16+ ions with helium
Wang Fei(王菲) and Gou Bing-Cong(芶秉聪). Chin. Phys. B, 2008, 17(4): 1227-1230.
[15] Neutralization process of Xeq+ ion grazing on Al(111) surface
Hu Bi-Tao(胡碧涛), Zhang Hong-Jun(张宏俊), Zhang Jian(张健), Song Yu-Shou(宋玉收), Wang Li-Li(王丽丽), Chen Chun-Hua(陈春花), and Gu Jian-Gan(顾建刚). Chin. Phys. B, 2007, 16(10): 2918-2923.
No Suggested Reading articles found!