1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 4 Shanghai EBIT Laboratory, Institute of Modern Physics, Fudan University, and the Key Laboratory of Applied Ion Beam Physics, Chinese Ministry of Education, Shanghai 200433, China
Abstract Dielectronic recombination (DR) is one of the dominant electron-ion recombination mechanisms for most highly charged ions (HCIs) in cosmic plasmas, and thus, it determines the charge state distribution and ionization balance therein. To reliably interpret spectra from cosmic sources and model the astrophysical plasmas, precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources. The main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe) at the Heavy-Ion Research Facility in Lanzhou (HIRFL) are both equipped with electron cooling devices, which provide an excellent experimental platform for electron-ion collision studies for HCIs. Here, the status of the DR experiments at the HIRFL-CSR is outlined, and the DR measurements with Na-like Kr25+ ions at the CSRm and CSRe are taken as examples. In addition, the plasma recombination rate coefficients for Ar12+, 14+, Ca14+, 16+, 17+, Ni19+, and Kr25+ ions obtained at the HIRFL-CSR are provided. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.
(Atomic, molecular, chemical, and grain processes)
Fund: This work was partly supported by the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and 12104437) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34020000). We thank S. Schippers for fruitful discussions on the data analysis. W. Q. Wen acknowledges the support of the Youth Innovation Promotion Association CAS. The authors are deeply grateful to the staff of the Accelerator Department for the smooth running of the CSR accelerator complex.
Corresponding Authors:
Weiqiang Wen, Linfan Zhu, Xinwen Ma
E-mail: wenweiqiang@impcas.ac.cn;lfzhu@ustc.edu.cn;x.ma@impcas.ac.cn
Cite this article:
Zhongkui Huang(黄忠魁), Shuxing Wang(汪书兴), Weiqiang Wen(汶伟强), Hanbing Wang(汪寒冰), Wanlu Ma(马万路), Chongyang Chen(陈重阳), Chunyu Zhang(张春雨), Dongyang Chen(陈冬阳), Houke Huang(黄厚科), Lin Shao(邵林), Xin Liu(刘鑫), Xiaopeng Zhou(周晓鹏), Lijun Mao(冒立军), Jie Li(李杰), Xiaoming Ma(马晓明), Meitang Tang(汤梅堂), Jiancheng Yang(杨建成), Youjin Yuan(原有进), Shaofeng Zhang(张少锋), Linfan Zhu(朱林繁), and Xinwen Ma(马新文) Absolute dielectronic recombination rate coefficients of highly charged ions at the storage ring CSRm and CSRe 2023 Chin. Phys. B 32 073401
[1] Müller A 2008 Advances in Atomic, Molecular, and Optical Physics55 293 [2] Müller A 2015 Atoms3 120 [3] Burgess A 1964 Astrophys. J.139 776 [4] Gu M F 2008 Can. J. Phys.86 675 [5] Chen W D, Xiao J, Shen Y, Fu Y Q, Meng F C, Chen C Y, Zhang B H, Tang Y J, Hutton R and Zou Y 2008 Phys. Plasma15 083301 [6] Badnell N R 2011 Computer Physics Communications182 1528 [7] Fritzsche S 2021 A&A 656 A163 [8] Ferland G J 2003 Annu. Rev. Astron. Astrophys.41 517 [9] Chakravorty S, Kembhavi A K, Elvis M, Ferland G and Badnell N R 2008 Monthly Notices of the Royal Astronomical Society: Letters 384 L24 [10] Badnell N R, O'Mullane M G, Summers H P, Altun Z, Bautista M A, Colgan J, Gorczyca T W, Mitnik D M, Pindzola M S and Zatsarinny O 2003 A&A406 1151 [11] Schippers S, Schnell M, Brandau C, Kieslich S, Müller A and Wolf A 2004 A&A421 1185 [12] Krantz C, Badnell N R, Müller A, Schippers S and Wolf A 2017 J. Phys. B: At. Mol. Opt. Phys.50 052001 [13] Belic D S, Dunn G H, Morgan T J, Mueller D W and Timmer C 1983 Phys. Rev. Lett.50 339 [14] Dittner P F, Datz S, Miller P D, Moak C D, Stelson P H, Bottcher C, Dress W B, Alton G D, Nešković N and Fou C M 1983 Phys. Rev. Lett.51 31 [15] Andersen L H, Hvelplund P, Knudsen H and Kvistgaard P 1989 Phys. Rev. Lett.62 2656 [16] Schippers S 2015 Nucl. Instrum. Methods B350 61 [17] Brandau C, Kozhuharov C, Lestinsky M, Müller A, Schippers S and Stöhlker T 2015 Phys. Scr.2015 014022 [18] Schuch R and Böhm S 2007 J. Phys. Conf. Ser.88 012002 [19] Brandau C and Kozhuharov C 2012 Atomic Processes in Basic and Applied Physics 283-306 [20] Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W and Ma X 2015 Phys. Scr. T166 014023 [21] Mahmood S, Huang Z K, Wen W Q, et al. 2020 J. Phys. B53 085004 [22] Huang Z K, Wang S X, Wen W Q, et al. 2020 X-Ray Spectrometry49 155 [23] Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser.235 2 [24] Wen W Q, Huang Z K, Wang S X,et al. 2020 Astrophys. J.905 36 [25] Wang S, Xu X, Huang Z, Wen W, Wang H, Khan N, Preval S, Badnell N, Schippers S and Mahmood S 2018 Astrophys. J.862 134 [26] Khan N, Huang Z K, Wen W Q, et al. 2022 J. Phys. B: At., Mol. Opt. Phys.55 035001 [27] Khan N, Huang Z K, Wen W Q, Mahmood S, Dou L J, Wang S X, Xu X, Wang H B, Chen C Y and Chuai X Y 2018 Chin. Phys. C42 064001 [28] Wang S X, Huang Z K, Wen W Q, et al. 2019 A&A 627 A171 [29] Huang Z K, Wen W Q, Wang S X, et al. 2020 Phys. Rev. A102 062823 [30] Huang Z K, Khan N, Wang S X, et al. 2022 Nucl. Instrum. Methods A1040 167286 [31] Xu X, Wang S X, Huang Z K, et al. 2018 Chin. Phys. B27 063402 [32] Wen W Q, Ma X, Xu W Q, et al. 2013 Nucl. Instrum. Methods B317 731 [33] Schippers S, Bartsch T, Brandau C, Müller A, Gwinner G, Wissler G, Beutelspacher M, Grieser M, Wolf A and Phaneuf R A 2000 Phys. Rev. A62 022708 [34] Bethe H A and Salpeter E E 1957 Atoms I / Atome I 88-436 [35] Gu M F 2003 Astrophys. J.590 1131 [36] Cowan R D 1981 The theory of atomic structure and spectra [37] Fogle M, Badnell N R, Glans P, Loch S D, Madzunkov S, Abdel-Naby S A, Pindzola M S and Schuch R 2005 A&A442 757 [38] Schippers S, Muller A, Gwinner G, Linkemann J, Saghiri A A and Wolf A 2001 Astrophys. J.555 1027 [39] Savin D W 2005 AIP Conf. Proc.774 297 [40] Altun Z, Yumak A, Badnell N R, Loch S D and Pindzola M S 2006 A&A447 1165 [41] Kallman T and Bautista M 2001 The Astrophysical Journal Supplement Series133 221 [42] Bryans P, Landi E and Savin D W 2009 The Astrophysical Journal691 1540 [43] Yang J C, Xia J W, Xiao G Q, et al. 2013 Nucl. Instrum. Methods B.317 263
Enhancement of electron-ion recombination rates at low energy range in the heavy ion storage ring CSRm Nadir Khan, Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Shu-Xing Wang(汪书兴), Han-Bing Wang(汪寒冰), Wan-Lu Ma(马万路), Xiao-Long Zhu(朱小龙), Dong-Mei Zhao(赵冬梅), Li-Jun Mao(冒立军), Jie Li(李杰), Xiao-Ming Ma(马晓明), Mei-Tang Tang(汤梅堂), Da-Yu Yin(殷达钰), Wei-Qing Yang(杨维青), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Lin-Fan Zhu(朱林繁), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(3): 033401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.