Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 053401    DOI: 10.1088/1674-1056/21/5/053401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion

Yuan Xiao-Jian(袁晓俭)a)†, Chen Nan-Xian(陈难先) a)b), and Shen Jiang(申江)a)
a. Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China;
b. Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The lattice-inversion embedded-atom-method interatomic potential developed previously by us is extended to alkaline metals including Li, Na, and K. It is found that considering interatomic interactions between neighboring atoms of an appropriate distance is a matter of great significance in constructing accurate embedded-atom-method interatomic potentials, especially for the prediction of surface energy. The lattice-inversion embedded-atom-method interatomic potentials for Li, Na, and K are successfully constructed by taking the fourth-neighbor atoms into consideration. These angular-independent potentials markedly promote the accuracy of predicted surface energies, which agree well with experimental results. In addition, the predicted structural stability, elastic constants, formation and migration energies of vacancy, and activation energy of vacancy diffusion are in good agreement with available experimental data and first-principles calculations, and the equilibrium condition is satisfied.
Keywords:  interatomic potential      embedded-atom method      Chen--M?bius lattice inversion      alkaline metal  
Received:  08 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  61.66.Bi (Elemental solids)  
  68.35.Md (Surface thermodynamics, surface energies)  
  61.72.jd (Vacancies)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606401).

Cite this article: 

Yuan Xiao-Jian(袁晓俭), Chen Nan-Xian(陈难先), and Shen Jiang(申江) Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion 2012 Chin. Phys. B 21 053401

[1] Rösch F, Rudhart C, Roth J and Trebin H R 2005 Phys. Rev. B 72 014128
[2] Hocker S, Gähler F and Brommer P 2006 Phil. Mag. 86 1051
[3] Ercolessi F and Adams J B 1994 Europhys. Lett. 26 583
[4] Carlsson A E, Gelatt C and Ehrenreich H 1980 Philos. Mag. A 41 241
[5] Wang J, Zhang K and Xie X 1994 J. Phys.:Condens. Matter 6 989
[6] Yao Y and Zhang Y 1999 Phys. Lett. A 256 391
[7] Chen N X, Chen Z D and Wei Y C 1997 Phys. Rev. E 55 R5
[8] Chen N X 2010 Möbius Inversion in Physics (Singapore:World Scientific Publishing) p. 183
[9] Chen N X, Shen J and Su X P 2001 J. Phys.:Condens. Matter 13 2727
[10] Zhang S and Chen N X 2002 Phys. Rev. B 66 064106
[11] Long Y, Chen N X and Zhang W Q 2005 J. Phys.:Condens. Matter 17 2045
[12] Chen Y and Shen J 2009 Acta Phys. Sin. 58 141 (in Chinese)
[13] Chen Y and Shen J 2009 Acta Phys. Sin. 58 146 (in Chinese)
[14] Qian P, Liu J L, Shen J, Bai L J, Ran Q and Wang Y L 2010 Chin. Phys. B 19 126001
[15] Qian P, Liu J L, Hu Y W, Bai L J and Shen J 2011 Chin. Phys. B 20 076104
[16] Carlsson A E 1990 Solid State Physics (Vol. 43) (New York:Academic) pp. 1--91
[17] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[18] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[19] Finnis M W and Sinclair J E 1984 Philos. Mag. A 50 45
[20] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[21] Tersoff J 1986 Phys. Rev. Lett. 56 632
[22] Pettifor D G 1989 Phys. Rev. Lett. 63 2480
[23] Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[24] Voter A and Chen S 1987 Mater. Res. Soc. Symp. Proc. 82 175
[25] Johnson R A 1988 Phys. Rev. B 37 3924
[26] Oh D J and Johnson R A 1988 J. Mater. Res. 3 471
[27] Johnson R A and Oh D J 1989 J. Mater. Res. 4 1195
[28] Adams J B and Foiles S M 1990 Phys. Rev. B 41 3316
[29] Liu X Y, Adams J B, Ercolessi F and Moriarty J A 1996 Modelling Simul. Mater. Sci. Eng. 4 293
[30] Liu X Y, Xu W, Foiles S M and Adams J B 1998 Appl. Phys. Lett. 72 1578
[31] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393
[32] Landa A, Wynblatt P, Siegel D J, Adams J B, Mryasov O N and Liu X Y 2000 Acta Mater. 48 1753
[33] Li Y, Siegel D J, Adams J B and Liu X Y 2003 Phys. Rev. B 67 125101
[34] Fellinger M R, Park H and Wilkins J W 2010 Phys. Rev. B 81 144119
[35] Baskes M I, Srinivasan S G, Valone S M and Hoagland R G 2007 Phys. Rev. B 75 094113
[36] Baskes M I 1992 Phys. Rev. B 46 2727
[37] Yuan X J, Chen N X, Shen J and Hu W Y 2010 J. Phys.:Condens. Matter 22 375503
[38] Sundquist B E 1964 Acta Metall. 12 67
[39] Grenga H E and Kumar R 1976 Surf. Sci. 61 283
[40] Guellil A M and Adams J B 1992 J. Mater. Res. 7 639
[41] Hu W Y and Masahiro F 2002 Modelling Simul. Mater. Sci. Eng. 10 1
[42] Daw M S 1989 Phys. Rev. B 39 7441
[43] Banerjea A and Smith J R 1988 Phys. Rev. B 37 6632
[44] Puska N J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
[45] Stott M J and Zaremba E 1982 Can. J. Phys. 60 1145
[46] Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963
[47] Herbst J F 1981 Phys. Rev. B 24 608
[48] Herbst J F and Wilkins J W 1981 Phys. Rev. B 24 1679
[49] Bridgman P W 1964 Collected Experimental Papers (Vol. 6) (Cambridge, Massachusetts:Harvard University Press) pp. 3819, 3835
[50] Morgan A 1974 High Temp. High Pressures 6 195
[51] Mao H K, Bell P M, Shaver J W and Steinberg D J 1978 J. Appl. Phys. 49 3276
[52] Carter W J, Marsh S P, Fritz J N and McQueen R G 1971 Nat. Bur. Stand. (U.S.) Spec. Publ. 326 147
[53] Morgan A 1975 High Temp. High. Pressures 7 65
[54] Li J H, Liang S H, Guo H and Liu B X 2005 Appl. Phys. Lett. 87 194111
[55] Wadley H N G, Zhou X, Johnson R A and Neurock M 2001 Prog. Mater. Sci. 46 329
[56] Baskes M I 1997 Mater. Chem. Phys. 50 152
[57] CASTEP (Molecular Simulation Software) 1998 http://www.accelrys.com/cerius2/castep.html
[58] Monkhorst H J and Pack J D 1976 Phys. Rev B 13 5188
[59] Barrett C S and Massalski T B 1980 Structure of Metals (3rd ed.) (Oxford:Pregamon Press) p. 629
[60] Kittle C 1976 Introduction to Solid Physics (5th ed.) (New York:John Wiley 8c Sons) p. 74
[61] Levy M, Bass H E and Stern R R 2001 Handbook of Elastic Properties of Solids, Liquids and Gases (vol. 2) (New York:Academic Press) pp. 99--103
[62] Vitos L, Ruban A V, Skriver H L and Kollar J 1998 Surf. Sci 411 186
[63] Baskes M I 1992 Phys. Rev. B 46 2727
[64] Foiles S M 1987 Surf. Sci 191 L779
[65] Dai X D, Li J H and Kong Y 2007 Phys. Rev. B 75 052102
[66] Li J H, Kong Y, Guo H B, Liang S H and Liu B X 2007 Phys. Rev. B 76 104101
[67] Hu W Y, Zhang B W, Huang B Y, Gao F and Bacon D J 2001 J. Phys.:Condens. Matter 13 1193
[68] Hu W Y, Shu X L and Zhang B W 2002 Comput. Mater. Sci 23 175
[69] Hu W Y, Deng H Q, Yuan X J and Fukumoto N 2003 Eur. Phys. J B 34 429
[70] Zhang B W, Hu W Y and Shu X L 2003 Theory of Embedded Atom Method and its Applications to Materials Science--Atomic Scale Materials Design Theory (Changsha:Hunan University Press)
[71] Ackland G J and Finnis M W 1986 Philos. Mag A 54 301
[72] Wang Y R and Boercker D B 1995 J. Appl. Phys 78 122
[73] Zope R R and Mishin Y 2003 Phys. Rev B 68 024102
[74] Mishin Y, Asta M and Li J 2010 Acta Materialia 58 1117
[75] Ouyang Y F, Zhang B W and Liao S Z 1994 Sci. China A 37 1232
[76] Feder R 1970 Phys. Rev B 2 828
[77] Shultz H 1991 Landolt-Bornstein, New Series, Group III (vol. 25) (Berlin:Springer)
[78] Frank W, Breier U, Elsasser C and Fahnle M 1993 Phys. Rev B 40 7676
[79] Messer R and Noack F 1975 Appl. Phys 6 79
[80] Schott V, Fahnle M and Madden P A 2000 J. Phys.:Condens. Matter 12 1171
[81] Schober H R, Petry W and Trampenau J 1992 J. Phys.:Condens. Matter 4 9321
[82] Feder R and Charbnau H P 1966 Phys. Rev 149 464
[83] Crawford J H and Slifkin L M 1972 Point Defects in Solids:General and Ionic Crystals (vol. 1) (New York:Plenum Press) p. 54
[84] Damak A C and Dienes G J 1963 Point of Defects in Metals (New York:Science Publishers Inc.) pp. 195--208
[85] Madonald R A, Shukla R C and Kahaner D K 1984 Phys. Rev B 29 6489
[86] Harder J M and Bacon D J 1986 Philos. Mag A 54 651
[87] Mehl M J 1993 Phys. Rev B 47 2493
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[3] Site preferences and lattice vibrations of Nd6Fe13-xTxSi(T = Co, Ni)
Huang Tian-Shun (黄天顺), Cheng Hai-Xia (成海霞), Wang Xiao-Xu (王晓旭), Zhang Zhen-Feng (张振峰), An Zhi-Wei (安志伟), Zhang Guo-Hua (张国华). Chin. Phys. B, 2015, 24(10): 103402.
[4] The ternary Ni–Al–Co embedded-atom-method potential for γ/γ’ Ni-based single-crystal superalloys:Construction and application
Du Jun-Ping (杜俊平), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(3): 033401.
[5] The influence of 3d-metal alloy additions on the elastic and thermodynamic properties of CuPd3
Huang Shuo (黄烁), Zhang Chuan-Hui (张川晖), Sun Jing (孙婧), Shen Jiang (申江). Chin. Phys. B, 2013, 22(8): 083401.
[6] Chen's lattice inversion embedded-atom method for Ni–Al alloy
Zhang Chuan-Hui (张川晖), Huang Shuo (黄烁), Shen Jiang (申江), Chen Nan-Xian (陈难先 ). Chin. Phys. B, 2012, 21(11): 113401.
[7] Atomistic simulation of site preference, Curie temperature, and lattice vibration of Nd2Co7 - xFex
Qian Ping(钱萍), Liu Jiu-Li (刘九丽), Hu Yao-Wen(胡耀文), Bai Li-Jun(白丽君), and Shen Jiang(申江). Chin. Phys. B, 2011, 20(7): 076104.
[8] Relaxed energy and structure of edge dislocation in iron
Zhang Yan(张研), Xie Li-Juan(解丽娟), Zhang Jian-Min(张建民), and Xu Ke-Wei(徐可为). Chin. Phys. B, 2011, 20(2): 026102.
[9] Site preference and thermodynamic properties of R3Ni13-xCoxB2 (R=Y, Nd and Sm)
Qian Ping (钱萍), Liu Jiu-Li (刘九丽), Shen Jiang (申江), Bai Li-Jun (白丽君), Ran Qiong (冉琼), Wang Yun-Liang (王云良). Chin. Phys. B, 2010, 19(12): 126001.
[10] Inverse Monte Carlo study on effective interaction potential of Ag--Rh alloy from pair correlation functions
Zhang Jing-Xiang(张景祥), Li Hui(李辉), Song Xi-Gui(宋西贵), and Zhang Jie(张洁) . Chin. Phys. B, 2009, 18(12): 5259-5266.
[11] Molecular dynamics simulation of surface melting behaviours of the V(110) plane
Yang Xi-Yuan(阳喜元), Hu Wang-Yu(胡望宇), Yuan Xiao-Jian(袁晓俭), and Cai Xin-Hua(蔡新华) . Chin. Phys. B, 2008, 17(7): 2633-2638.
[12] Calculation of the surface energy of fcc metals with modified embedded-atom method
Zhang Jian-Min (张建民), Ma Fei (马飞), Xu Ke-Wei (徐可为). Chin. Phys. B, 2004, 13(7): 1082-1090.
[13] A general Möbius inversion transform formula for hcp lattices and its application
Li Mi (李泌), Li Yi-Shan (李一山). Chin. Phys. B, 2002, 11(4): 332-338.
No Suggested Reading articles found!