Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034302    DOI: 10.1088/1674-1056/ac89dc

Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model

Fei Gao(高飞)1,2, Fanghua Xu(徐芳华)1,†, Zhenglin Li(李整林)3, Jixing Qin(秦继兴)4,‡, and Qinya Zhang(章沁雅)1
1 Department of Earth System Science, Ministry of Education Key Laboratory of Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China;
2 Naval Research Institute, Tianjin 300061, China;
3 School of Ocean Engineering and technology, Sun Yat-Sen University, Zhuhai 519000, China;
4 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  An ocean-acoustic joint model is developed for research of acoustic propagation uncertainty in internal wave environments. The internal waves are numerically produced by tidal forcing over a continental slope using an ocean model. Three parameters (i.e., internal wave, source depth, and water depth) contribute to the dynamic waveguide environments, and result in stochastic sound fields. The sensitivity of the transmission loss (TL) to environment parameters, statistical characteristics of the TL variation, and the associated physical mechanisms are investigated by the Sobol sensitivity analysis method, the Monte Carlo sampling, and the coupled normal mode theory, respectively. The results show that the TL is most sensitive to the source depth in the near field, resulted from the initial amplitudes of higher-order modes; while in middle and far fields, the internal waves are responsible for more than 80% of the total acoustic propagation contribution. In addition, the standard deviation of the TL in the near field and the shallow layer is smaller than those in the middle and far fields and the deep layer.
Keywords:  acoustic propagation uncertainty      ocean-acoustic joint model      internal wave      sensitivity analysis  
Received:  24 May 2022      Revised:  31 July 2022      Accepted manuscript online:  16 August 2022
PACS:  92.10.Vz (Underwater sound)  
  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Re (Signal coherence or fluctuation due to sound propagation/scattering in the ocean)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0607900), the National Natural Science Foundation of China (Grant Nos. 42176019 and 11874061), and the Youth Innovation Promotion Association CAS (Grant No. 2021023).
Corresponding Authors:  Fanghua Xu, Jixing Qin     E-mail:;

Cite this article: 

Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅) Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model 2023 Chin. Phys. B 32 034302

[1] Whalen C B, Lavergne C D, Garabato N A C, Klymak J M, Mackinnon J A and Sheen K L 2020 Nature 1 606
[2] Guo C and Chen X 2014 Prog. Oceanogr. 121 7
[3] Gerdes F and Finette S 2012 J. Acoust. Soc. Am. 132 2251
[4] Sha L W and Nolte L W 2005 J. Acoust. Soc. Am. 117 1942
[5] Dossot G A, Smith K B, Badiey M, Miller J H and Potty G R 2019 J. Acoust. Soc. Am. 146 1875
[6] Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F and Tang T Y 2004 IEEE J. Ocean. Eng. 29 1249
[7] Abbot P, Dyer I and Emerson C 2006 IEEE J. Ocean. Eng. 31 368
[8] Emerson C, Lynch J F, Abbot P, Lin Y T, Duda T F, Gawakiewicz G G and Chen C F 2015 IEEE J. Ocean. Eng. 40 1003
[9] Da L L, Guo W H, Zhao J X and Fan P X 2015 Acta Acust. 40 477 (in Chinese)
[10] DeCourcy B J, Lin Y T and Siegmann W L 2018 J. Acoust. Soc. Am. 143 706
[11] Lermusiaux P F J, Xu J S and Chen C F 2010 IEEE J. Ocean. Eng. 35 895
[12] James K R and Dowling D R 2008 J. Acoust. Soc. Am. 124 1465
[13] Khazaie S, Wang X, Komatitsch D and Sagaut P 2019 Wave Motion 91 102390
[14] Finette S 2009 J. Acoust. Soc. Am. 126 2242
[15] Yang T C 2013 J. Acoust. Soc. Am. 135 610
[16] Worcester P F, Andrew R K, Baggeroer A B, Colosi J A, D'Spain G L. Dzieciuch M A, Heaney K D, Howe B M, Brue M H, Kemp J N, Mercer J A, Stephen R A and Uffelen L J V 2012 J. Acoust. Soc. Am. 131 3352
[17] Liu J, Peng Z H, Li Z L, Luo W Y and Yang X S 2020 J. Acoust. Soc. Am. 147 EL209
[18] Powell B S, Kerry C G and Cornuelle B D 2013 J. Acoust. Soc. Am. 134 3211
[19] Geyer F, Sagen H, Cornuelle B, Mazloff M R and Vazquez H J 2020 J. Acoust. Soc. Am. 147 1042
[20] Storto A, Falchetti S, Oddo P, Jiang Y M and Tesei A 2020 J. Geophysi. Res. Oceans 125 e2019JC015636
[21] Lam F P A, Jr P J H, Jannmaat J, Lermusiaux P F J, Leslie W G, Schouten M W, Raa L A and Rixen M 2009 J. Marine Syst. 78 S306
[22] Warn-varnas A C, Chin-bing S A, King D B, Hallock Z and Hawkins J A 2003 Surv. Geophys. 24 39
[23] Duda T F, Lin Y T, Newhall A E, Helfrich K R, Lynch J F, Zhang W G, Lermusiaux P F J and Wilkin J 2019 J. Acoust. Soc. Am. 146 1996
[24] Duda T F and Cornuelle B D 2021 Proc. Meet. Acoust. 43 002001
[25] Huang X M, Huang X and Wang D 2019 Geosci. Model. Dev. 12 4729
[26] Lin Y L, Huang X M and Liang Y S 2020 J. Adv. Model. Earth Syst. 12 e2019MS002036
[27] Alford M H, MacKinnon J A, Smmons H L and Nash J D 2016 Annu. Rev. Mar. Sci. 8 95
[28] Chen C T and Millero F J 1977 J. Acoust. Soc. Am. 62 1129
[29] Collins M D 1993 J. Acoust. Soc. Am. 93 1736
[30] Tielburger D, Finette S and Wolf S 1997 J. Acoust. Soc. Am. 101 789
[31] Liu R Y and Li Z L 2018 Chin. Phys. B 28 014302
[32] Guo C, Chen X, Vlasenko V and Stashchuk N 2011 Ocean Model. 38 203
[33] Vlasenko V and Stashchuk N 2021 Ocean Model. 160 101767
[34] Buijsman M C, Kanarska Y and McWilliams J C 2010 J. Geophys. Res. 115 C2012
[35] Xu J X, Chen Z W, Xie J S and Cai S Q 2016 Commun. Nonlinear Sci. 32 122
[36] Nakamura T, Awaji T, Hatayama T, Akitomo K, Takizawa T, Kono T, Kawasaki Y and Fukasawa M 2000 J. Phys. Oceanography 30 1622
[37] Li D, Chen X and Liu A 2011 Ocean Model. 40 105
[38] Sobol I M 1993 Math Modeling Comput. Exp. 1 407
[39] Gao F, Xu F H, Li Z L and Qin J X 2022 Acta Phys. Sin. 71 204301 (in Chinese)
[40] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011Computational Ocean Acoustics (New York: Springer) pp. 403-408
[41] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) Technical report SM-2
[42] Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K and Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655
[43] Ren C, Huang Y W and Xia Z 2022 Acta Phys. Sin. 71 024301 (in Chinese)
[44] Mo Y X, Piao S C and Zhang H G Li L 2014 Acta Phys. Sin. 63 214302 (in Chinese)
[1] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[2] Ocean internal waves interpreted as oscillation travelling waves in consideration of ocean dissipation
Jiang Zhu-Hui (姜祝辉), Huang Si-Xun (黄思训), You Xiao-Bao (游小宝), Xiao Yi-Guo (肖义国). Chin. Phys. B, 2014, 23(5): 050302.
[3] Variational principles for two kinds of extended Korteweg–de Vries equations
Cao Xiao-Qun(曹小群), Song Jun-Qiang(宋君强), Zhang Wei-Min(张卫民), and Zhao Jun(赵军) . Chin. Phys. B, 2011, 20(9): 090401.
[4] Third-order Stokes wave solutions for interfacial internal waves in a three-layer dendity-stratified fluid
Chen Xiao-Gang(陈小刚), Guo Zhi-Ping(郭志萍), Song Jin-Bao(宋金宝), He Xiao-Dong(赫晓东), Guo Jun-Ming(郭军明), Bao Shu-Hong(包曙红), and Cui Wei(崔巍). Chin. Phys. B, 2009, 18(5): 1906-1916.
[5] Second-order random wave solutions for interfacial internal waves in N-layer density-stratified fluid
Chen Xiao-Gang (陈小刚), Song Jin-Bao (宋金宝). Chin. Phys. B, 2006, 15(4): 756-766.
[6] A set of Boussinesq-type equations for interfacial internal waves in two-layer stratified fluid
Song Jin-Bao(宋金宝). Chin. Phys. B, 2006, 15(12): 2796-2803.
No Suggested Reading articles found!