ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model |
Fei Gao(高飞)1,2, Fanghua Xu(徐芳华)1,†, Zhenglin Li(李整林)3, Jixing Qin(秦继兴)4,‡, and Qinya Zhang(章沁雅)1 |
1 Department of Earth System Science, Ministry of Education Key Laboratory of Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China; 2 Naval Research Institute, Tianjin 300061, China; 3 School of Ocean Engineering and technology, Sun Yat-Sen University, Zhuhai 519000, China; 4 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract An ocean-acoustic joint model is developed for research of acoustic propagation uncertainty in internal wave environments. The internal waves are numerically produced by tidal forcing over a continental slope using an ocean model. Three parameters (i.e., internal wave, source depth, and water depth) contribute to the dynamic waveguide environments, and result in stochastic sound fields. The sensitivity of the transmission loss (TL) to environment parameters, statistical characteristics of the TL variation, and the associated physical mechanisms are investigated by the Sobol sensitivity analysis method, the Monte Carlo sampling, and the coupled normal mode theory, respectively. The results show that the TL is most sensitive to the source depth in the near field, resulted from the initial amplitudes of higher-order modes; while in middle and far fields, the internal waves are responsible for more than 80% of the total acoustic propagation contribution. In addition, the standard deviation of the TL in the near field and the shallow layer is smaller than those in the middle and far fields and the deep layer.
|
Received: 24 May 2022
Revised: 31 July 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
92.10.Vz
|
(Underwater sound)
|
|
43.30.Bp
|
(Normal mode propagation of sound in water)
|
|
43.30.Re
|
(Signal coherence or fluctuation due to sound propagation/scattering in the ocean)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0607900), the National Natural Science Foundation of China (Grant Nos. 42176019 and 11874061), and the Youth Innovation Promotion Association CAS (Grant No. 2021023). |
Corresponding Authors:
Fanghua Xu, Jixing Qin
E-mail: fxu@mails.tsinghua.edu.cn;qjx@mail.ioa.ac.cn
|
Cite this article:
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅) Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model 2023 Chin. Phys. B 32 034302
|
[1] Whalen C B, Lavergne C D, Garabato N A C, Klymak J M, Mackinnon J A and Sheen K L 2020 Nature 1 606 [2] Guo C and Chen X 2014 Prog. Oceanogr. 121 7 [3] Gerdes F and Finette S 2012 J. Acoust. Soc. Am. 132 2251 [4] Sha L W and Nolte L W 2005 J. Acoust. Soc. Am. 117 1942 [5] Dossot G A, Smith K B, Badiey M, Miller J H and Potty G R 2019 J. Acoust. Soc. Am. 146 1875 [6] Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F and Tang T Y 2004 IEEE J. Ocean. Eng. 29 1249 [7] Abbot P, Dyer I and Emerson C 2006 IEEE J. Ocean. Eng. 31 368 [8] Emerson C, Lynch J F, Abbot P, Lin Y T, Duda T F, Gawakiewicz G G and Chen C F 2015 IEEE J. Ocean. Eng. 40 1003 [9] Da L L, Guo W H, Zhao J X and Fan P X 2015 Acta Acust. 40 477 (in Chinese) [10] DeCourcy B J, Lin Y T and Siegmann W L 2018 J. Acoust. Soc. Am. 143 706 [11] Lermusiaux P F J, Xu J S and Chen C F 2010 IEEE J. Ocean. Eng. 35 895 [12] James K R and Dowling D R 2008 J. Acoust. Soc. Am. 124 1465 [13] Khazaie S, Wang X, Komatitsch D and Sagaut P 2019 Wave Motion 91 102390 [14] Finette S 2009 J. Acoust. Soc. Am. 126 2242 [15] Yang T C 2013 J. Acoust. Soc. Am. 135 610 [16] Worcester P F, Andrew R K, Baggeroer A B, Colosi J A, D'Spain G L. Dzieciuch M A, Heaney K D, Howe B M, Brue M H, Kemp J N, Mercer J A, Stephen R A and Uffelen L J V 2012 J. Acoust. Soc. Am. 131 3352 [17] Liu J, Peng Z H, Li Z L, Luo W Y and Yang X S 2020 J. Acoust. Soc. Am. 147 EL209 [18] Powell B S, Kerry C G and Cornuelle B D 2013 J. Acoust. Soc. Am. 134 3211 [19] Geyer F, Sagen H, Cornuelle B, Mazloff M R and Vazquez H J 2020 J. Acoust. Soc. Am. 147 1042 [20] Storto A, Falchetti S, Oddo P, Jiang Y M and Tesei A 2020 J. Geophysi. Res. Oceans 125 e2019JC015636 [21] Lam F P A, Jr P J H, Jannmaat J, Lermusiaux P F J, Leslie W G, Schouten M W, Raa L A and Rixen M 2009 J. Marine Syst. 78 S306 [22] Warn-varnas A C, Chin-bing S A, King D B, Hallock Z and Hawkins J A 2003 Surv. Geophys. 24 39 [23] Duda T F, Lin Y T, Newhall A E, Helfrich K R, Lynch J F, Zhang W G, Lermusiaux P F J and Wilkin J 2019 J. Acoust. Soc. Am. 146 1996 [24] Duda T F and Cornuelle B D 2021 Proc. Meet. Acoust. 43 002001 [25] Huang X M, Huang X and Wang D 2019 Geosci. Model. Dev. 12 4729 [26] Lin Y L, Huang X M and Liang Y S 2020 J. Adv. Model. Earth Syst. 12 e2019MS002036 [27] Alford M H, MacKinnon J A, Smmons H L and Nash J D 2016 Annu. Rev. Mar. Sci. 8 95 [28] Chen C T and Millero F J 1977 J. Acoust. Soc. Am. 62 1129 [29] Collins M D 1993 J. Acoust. Soc. Am. 93 1736 [30] Tielburger D, Finette S and Wolf S 1997 J. Acoust. Soc. Am. 101 789 [31] Liu R Y and Li Z L 2018 Chin. Phys. B 28 014302 [32] Guo C, Chen X, Vlasenko V and Stashchuk N 2011 Ocean Model. 38 203 [33] Vlasenko V and Stashchuk N 2021 Ocean Model. 160 101767 [34] Buijsman M C, Kanarska Y and McWilliams J C 2010 J. Geophys. Res. 115 C2012 [35] Xu J X, Chen Z W, Xie J S and Cai S Q 2016 Commun. Nonlinear Sci. 32 122 [36] Nakamura T, Awaji T, Hatayama T, Akitomo K, Takizawa T, Kono T, Kawasaki Y and Fukasawa M 2000 J. Phys. Oceanography 30 1622 [37] Li D, Chen X and Liu A 2011 Ocean Model. 40 105 [38] Sobol I M 1993 Math Modeling Comput. Exp. 1 407 [39] Gao F, Xu F H, Li Z L and Qin J X 2022 Acta Phys. Sin. 71 204301 (in Chinese) [40] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011Computational Ocean Acoustics (New York: Springer) pp. 403-408 [41] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) Technical report SM-2 [42] Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K and Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655 [43] Ren C, Huang Y W and Xia Z 2022 Acta Phys. Sin. 71 024301 (in Chinese) [44] Mo Y X, Piao S C and Zhang H G Li L 2014 Acta Phys. Sin. 63 214302 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|