|
|
Modulational instability of a resonantly polariton condensate in discrete lattices |
Wei Qi(漆伟)†, Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐) |
Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, China |
|
|
Abstract We study modulational instability of a resonantly polariton condensate in a discrete lattice. Employing a discrete gain-saturation model, we derive the dispersion relation for the modulational instability by means of the linear-stability analysis. Effects of the pumping strength, the nonlinearity, the strength of the detuning, and the coupling strength on the modulation instability are investigated. It is found that the interplay between these parameters will dramatically change the modulational instability condition. We believe that the predicted results in this work can be useful for future possible experiment of exciton-polariton condensate in lattices.
|
Received: 18 May 2022
Revised: 04 July 2022
Accepted manuscript online: 12 August 2022
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: This work was partly supported by the National Natural Science Foundation of China (Grant No. 11805116), and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2023-JC-YB-037). |
Corresponding Authors:
Wei Qi
E-mail: qiwei@sust.edu.cn
|
Cite this article:
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐) Modulational instability of a resonantly polariton condensate in discrete lattices 2023 Chin. Phys. B 32 030502
|
[1] Kasprzak J, Richard M, Kundermann S and Marchetti F M 2006 Nature 443 409 [2] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299 [3] Kéna-Cohen S and Forrest S R 2010 Nat. Photon. 4 371 [4] Manni F, Lagoudakis K G, Pietka B, Fontanesi L, Wouters M, Savona V, Andre R and Deveaud-Plédran B 2011 Phys. Rev. Lett. 106 176401 [5] Matuszewski M, Rosberg C R, Neshev D N, Sukhorukov A A, Mitchell A, Trippenbach M, Austin M W, Królikowski W and Kivshar Y S 2006 Opt. Express 14 254 [6] Malpuech G, Solnyshkov D D, Ouerdane H, Glazov M M and Shelykh I 2007 Phys. Rev. Lett. 98 206402 [7] Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaitre A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G and Bloch J 2010 Nat. Phys. 6 860 [8] Galbiati M, Ferrier L, Solnyshkov D D, Tanese D, Wertz E, Amo A, Abbarchi M, Senellart P, Sagnes I, Lemaitre A, Galopin E, Malpuech G and Bloch J 2012 Phys. Rev. Lett. 108 126403 [9] Schneider C, Winkler K, Fraser M D, Kamp M, Yamamoto Y, Ostrovskaya E A and Höling S 2017 Rep. Prog. Phys. 80 016503 [10] Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaitre A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G and Bloch J 2013 Nat. Commun. 4 1749 [11] Cerda-Méndez E A, Krizhanovskii D N, Wouters M, Bradley R, Biermann K, Guda K, HeyR, Santos P V, Sarkar D and Skolnick M S 2010 Phys. Rev. Lett. 105 116402 [12] Stępnicki P and Matuszewski M 2013 Phys. Rev. A 88 033626 [13] Yulin A V, Chestnov I Y, Ma X, Schumacher S, Peschel U and Egorov O V 2016 Phys. Rev. B 94 054312 [14] Ganerjee R and Liew T C H 2020 New J. Phys. 22 103062 [15] Goblot V, Rauer B, Vicentini F, Boité A L, Galopin E, Lemaitre A, Gratiet L L, Harouri A, Sagnes I, Ravets S, Ciuti C, Amo A and Bloch J 2019 Phys. Rev. Lett. 123 113901 [16] Pieczarka M, Estrecho E, Ghosh S, Wurdack M, Steger M, Snoke D, West K, Pfeiffer L, Liew T C H, Truscott A and Ostrovskaya E 2021 Optica 8 1084 [17] Zhang W, Chen X, Kartashov Y, Skryabin D and Ye F 2019 Laser Photon. Rev. 13 19001987 [18] Li C, Ye F, Chen X and Kartashov Y V, Ferrando A Torner L and Skryabin D V 2018 Phys. Rev. B 97 081103 [19] Mandal S, Banerjee R, Ostrovskaya E A and Liew T C H 2020 Phys. Rev. Lett. 125 123902 [20] Banerjee R, Mandal S and Liew T C H 2020 Phys. Rev. Lett. 124 063901 [21] Nguyen J H V, Luo D and Hulet R G 2017 Science 356 422 [22] Duan L, Liu C, Zhao L C and Yang Z Y 2020 Acta Phys. Sin. 69 010501 (in Chinese) [23] Wang L L and Liu W J 2020 Chin. Phys. B 29 100501 [24] Kartashov Y V and Skryabin D V 2016 Optica 3 001228 [25] Egorov O A and Lederer F 2013 Phys. Rev. B 87 115315 [26] Johnston A, Kalinin K P and Berloff N G 2021 Phys. Rev. B 103 L060507 [27] Xu X, Mandal S, Banerjee R, Ghosh S and Liew T C H 2021 Phys. Rev. B 103 235306 [28] Pieczarka M, Estrecho E, Boozarjmehr M, Bleu O, Steger M, West K, Pfeiffer L N, Snoke D W, Levisen J, Parish M M, Truscott A G and Ostrovskaya E A 2020 Nat. Commun. 11 429 [29] Takemura N, Trebaol S, Wouters M, Portella-Oberli M T and Deveaud B 2014 Nat. Phys. 10 500 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|