INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells |
Youming Huang(黄友铭)1, Yizhi Wu(吴以治)1,†, Xiaoliang Xu(许小亮)2, Feifei Qin(秦飞飞)3, Shihan Zhang(张诗涵)1, Jiakai An(安嘉凯)1, Huijie Wang(王会杰)4, and Ling Liu(刘玲)1 |
1 Tiangong University, Tianjin 300387, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 4 Shanxi Normal University, Shanxi 041004, China |
|
|
Abstract All-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells have great potential for development, but their device performance needs to be further improved. Recently, metal nanostructures have been successfully applied in the field of solar cells to improve their performance. Nano Ag-enhanced power conversion efficiency (PCE) in one CsPbIBr2 perovskite solar cell utilizing localized surface plasmons of Ag nanoparticles (NPs) on the surface has been researched experimentally and by simulation in this paper. The localized surface plasmon resonance of Ag NPs has a near-field enhancement effect, which is expected to improve the light absorption of CsPbIBr2 perovskite photovoltaic devices. In addition, Ag NPs have a forward-scattering effect on the incident light, which can also improve the performance of CsPbIBr2-based perovskite photovoltaic devices. By directly assembling Ag NPs (with a size of about 150 nm) on the surface of fluorine-doped tin oxide it is found when the particle surface coverage is 10%, the CsPbIBr2 perovskite photovoltaic device achieves a best PCE of 2.7%, which is 9.76% higher than that of the control group. Without changing any existing structure in the ready-made solar cell, this facile and efficient method has huge applications. To the best of our knowledge, this paper is the first report on nano Ag-enhanced photoelectric conversion efficiency in this kind of CsPbIBr2 perovskite solar cell.
|
Received: 22 May 2022
Revised: 05 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504264, 21802092, 51501128, 52072005, and 51872279) and the Scientific Research Plan Project of Tianjin Municipal Education Commission (Grant No. 2017KJ097). |
Corresponding Authors:
Yizhi Wu
E-mail: wuyizhi@tiangong.edu.cn
|
Cite this article:
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲) Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells 2022 Chin. Phys. B 31 128802
|
[1] Gong L, Liu Y, Gu X, Lu J, Zhang J, Ye Z, Chen Z and Li L 2014 Mat. Sci. Semicon. Proc. 26 276 [2] Zeng F Q, Sun K W, Gong L, Jiang L X, Liu F Y, Lai Y Q and Li J 2015 Physica Status Solidi-Rapid Research Letters 9 687 [3] Zhou R, Yang Z, Xu J Z and Cao G Z 2018 Coord. Chem. Rev. 374 279 [4] Cheng Y H, So F and Tsang S W 2019 Mater. Horiz. 6 1611 [5] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [6] Wu T, Qin Z, Wang Y, Wu Y, Chen W, Zhang S, Cai M, Dai S, Zhang J, Liu J, Zhou Z, Liu X, Segawa H, Tan H, Tang Q, Fang J, Li Y, Ding L, Ning Z, Qi Y, Zhang Y and Han L 2021 Nano-Micro Letters 13 1 [7] Ma Z, Xiao Z, Liu Q, Huang D, Zhou W, Jiang H, Yang Z, Zhang M, Zhang W and Huang Y 2020 ACS Appl. Mater. Interfaces 12 52779 [8] Ma Z, Huang D, Liu Q, Yan G, Xiao Z, Chen D, Zhao J, Xiang Y, Peng C, Li H, Zhang M, Zhang W, Duan L and Huang Y 2022 J. Energy Chem. 66 152 [9] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F and Boyen H G 2015 Adv. Energy Mater. 5 1500477 [10] Correa-Baena J P, Abate A, Saliba M, Tress W, Jacobsson T J, Gratzel M and Hagfeldt A 2017 Energy Environ. Sci. 10 710 [11] Ma Q, Huang S, Wen X, Green M A and Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202 [12] Yang S, Guo Z, Gao L, Yu F, Zhang C, Fan M, Wei G and Ma T 2019 Sol. Rrl 3 1900212 [13] Du J, Duan J, Yang X, Duan Y, Zhou Q and Tang Q 2021 Angew. Chem. Int. Edit. 60 10608 [14] Zhang J, Duan J, Zhang Q, Guo Q, Yan F, Yang X, Duan Y and Tang Q 2022 Chem. Eng. J. 431 134230 [15] Luo Q, Zhang C, Deng X, Zhu H, Li Z, Wang Z, Chen X and Huang S 2017 Acs Appl. Mater. Interfaces 9 34821 [16] Wei J, Xu R P, Li Y Q, Li C, Chen J D, Zhao X D, Xie Z Z, Lee C S, Zhang W J and Tang J X 2017 Adv. Energy Mater. 7 1700492 [17] Tavakoli M M, Tsui K H, Zhang Q, He J, Yao Y, Li D and Fan Z 2015 Acs Nano 9 10287 [18] Atwater H A and Polman A 2010 Nat. Mater. 9 205 [19] Lu L, Tan R F, Chen D F, Tong Y Q, Yan X H, Gong M G and Wu J Z 2019 Nanotechnology 30 305401 [20] Saliba M, Zhang W, Burlakov V M, Stranks S D, Sun Y, Ball J M, Johnston M B, Goriely A, Wiesner U and Snaith H J 2015 Adv. Funct. Mater. 25 5038 [21] Yuan Z, Wu Z, Bai S, Xia Z, Xu W, Song T, Wu H, Xu L, Si J, Jin Y and Sun B 2015 Adv. Energy Mater. 5 1500038 [22] Cheng Y, Chen C, Chen X, Jin J, Li H, Song H and Dai Q 2017 J. Mater. Chem. A 5 6515 [23] Wang J Y, Hsu F C, Huang J Y, Wang L and Chen Y F 2015 Acs Appl. Mater. Interfaces 7 27676 [24] Lee D S, Kim W, Cha B G, Kwon J, Kim S J, Kim M, Kim J, Wang D H and Park J H 2016 Acs Appl. Mater. Interfaces 8 449 [25] Cui J, Chen C, Han J, Cao K, Zhang W, Shen Y and Wang M 2016 Adv. Sci. 3 1500312 [26] Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U and Snaith H J 2013 Nano Lett. 13 4505 [27] Green M A and Pillai S 2012 Nat. Photon. 6 130 [28] Zhang Y, Ouyang Z, Stokes N, Jia B, Shi Z and Gu M 2012 Appl. Phys. Lett. 100 151101 [29] Li J, Cushing S K, Meng F, Senty T R, Bristow A D and Wu N 2015 Nat. Photon. 9 601 [30] Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F and Polman A 2011 Nano Lett. 11 1760 [31] Mokkapati S, Beck F J, de Waele R, Polman A and Catchpole K R 2011 J. Phys. D Appl. Phys. 44 185101 [32] Wu Y, Ren S, Xu X, Liu L, Wang H and Yu J 2014 Sol. Energy Mater. Sol. Cells 126 113 [33] Lu L, Zeng W Q, Hu S S, Chen D F, Lei J M and Ren N F 2018 J. Alloys Compd. 731 753 [34] Richter J M, Abdi-Jalebi M, Sadhanala A, Tabachnyk M, Rivett J P H, Pazos-Outon L M, Godel K C, Price M, Deschler F and Friend R H 2016 Nat. Commun. 7 13941 [35] Miller O D, Yablonovitch E and Kurtz S R 2012 IEEE J. Photovolt. 2 303 [36] Pazos-Outon L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrucinic M, Alsari M, Snaith H J, Ehrler B, Friend R H and Deschler F 2016 Science 351 1430 [37] Even J, Pedesseau L and Katan C 2014 J. Phys. Chem. C 118 11566 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|