Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050202    DOI: 10.1088/1674-1056/ac3d82
GENERAL Prev   Next  

Correlation and trust mechanism-based rumor propagation model in complex social networks

Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青)
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  In real life, the rumor propagation is influenced by many factors. The complexity and uncertainty of human psychology make the diffusion model more challenging to depict. In order to establish a comprehensive propagation model, in this paper, we take some psychological factors into consideration to mirror rumor propagation. Firstly, we use the Ridenour model to combine the trust mechanism with the correlation mechanism and propose a modified rumor propagation model. Secondly, the mean-field equations which describe the dynamics of the modified SIR model on homogenous and heterogeneous networks are derived. Thirdly, a steady-state analysis is conducted for the spreading threshold and the final rumor size. Fourthly, we investigate rumor immunization strategies and obtain immunization thresholds. Next, simulations on different networks are carried out to verify the theoretical results and the effectiveness of the immunization strategies. The results indicate that the utilization of trust and correlation mechanisms leads to a larger final rumor size and a smaller terminal time. Moreover, different immunization strategies have disparate effectiveness in rumor propagation.
Keywords:  rumor propagation model      Ridenour model      immunization strategy  
Received:  05 August 2021      Revised:  02 November 2021      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.62071248) and the Postgraduate Research Innovation Program of Jiangsu Province,China (Grant No.KYCX20 0730).
Corresponding Authors:  You-Guo Wang,E-mail:wangyg@njupt.edu.cn     E-mail:  wangyg@njupt.edu.cn
About author:  2021-11-26

Cite this article: 

Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青) Correlation and trust mechanism-based rumor propagation model in complex social networks 2022 Chin. Phys. B 31 050202

[1] Lin Y, Cai Z, Wang X and F Hao 2019 IEEE Trans. Veh. Technol. 68 9220
[2] Yang L X, Zhang T R, Yang X F, Wu Y B and Yan Y 2018 J Franklin Inst. 355 8079
[3] Vosoughi S, Roy D and Aral S 2018 Science 359 1146
[4] He Z, Cai Z, Yu J, Wang X, Sun Y and Li Y 2017 IEEE Trans. Veh. Technol. 66 2789
[5] Nekovee M, Moreno Y, Bianconi G and Marsili M 2008 Phys. A 374 457
[6] Fei X, Yun L, Zhang Z J, Jiang Z and Zhang Y 2012 Phys. Lett. A 376 2103
[7] Moreno Y, Nekovee M and Pacheco A F 2004 Phys. Rev. E 69 066130
[8] Xia L L, Song Y R, Jiang G P and Bo S 2015 Phys. A 437 295
[9] Wang Y M, Guo T Y, Li W D and Chen B 2020 Chin. Phys. B 29 100204
[10] Zhu H and Ma J 2019 Phys. A 513 257
[11] Wang Z and Chen A 2021 Complexity 2021 6685306
[12] Li J, Hu Y and Jin Z 2019 Complexity 2019 4268393
[13] Huang J and Jin X 2011 J. Syst. Sci. Complex. 24 449
[14] Xia L, Jiang G, Song Y and Bo S 2015 Entropy 17 471
[15] Zhao L, Wang X, Wang J, Qiu X and Xie W 2014 Discrete Dyn. Nat. Soc. 2014 659273
[16] Liu S and Qiu L 2020 Discrete Dyn. Nat. Soc. 2020 5712968
[17] Xu Y, Mei R J, Yang Y J and Kong Z M 2019 Adv. Math. Phys. 2019 7241021
[18] Zhao L, Xie W, Gao H, Qiu X, Wang X and Zhang S 2013 Phys. A 392 6146
[19] Afassinou K 2014 Phys. A 414 43
[20] Huo J and Zhao H 2016 Phys. A 448 41
[21] Sahafizadeh E and Ladani B T 2018 Phys. A 506 412
[22] Huo L, Wang L, Song N, Ma C and He B 2016 Phys. A 468 855
[23] Zhang X W 2014 J. Comput. Appl. 34 411
[24] Chen Z, Tong W, Kausar S and Zheng S 2016 International Conference on Audio, Language and Image Processing, July 11-12 2016, Shanghai, China, p. 658
[25] Jin M and Liu F 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, March 15-17 2019, Chengdu, China, p. 2256
[26] Zhu X and Liu F 2016 International Conference on Network and Information Systems for Computers, April 15-17 2016, Wuhan, China, p. 12
[27] Chua A and Banerjee S 2015 International Conference on Asian Digital Libraries, December 9-12 2015, Seoul, Korea, p. 33
[28] F LiuandLi M 2019 Int. J. Mach. Learn Cyb. 10 1449
[29] Wang Y Q, Yang X Y, Han Y L and Wang X A 2013 Commun. Theor. Phys. 59 510
[30] Singh A and Singh Y N 2013 International Conference on Signal-Image Technology & Internet-Based Systems, December 2-5 2013, Kyoto, Japan, p. 514
[31] Chen X and Wang N 2020 Sci. Rep. 10 5887
[32] Liu Y, Sanhedrai H, Dong G G, Shekhtman L M, Wang F, Buldyrev S V and Havlin S 2020 Natl. Sci. Rev. 8127
[33] Li X, Guo J, Chao G, Zhang L and Zhang Z 2018 Chaos Soliton Fract. 106 214
[34] Xin G E 2011 Comput. Sci. 3883(in Chinese)
[35] Fu X C, Michael S, David M W and Zhang H F 2008 Phys. Rev. E 77036113
[36] F Nian, Hu C, Yao S, Wang L and Wang X 2018 Chaos Soliton Fract.107228
[37] Wang J, Zhao L and Huang R 2014 Phys. A 39843
[38] Cohen R, Havlin S and Ben-Avraham D 2002 Phys. Rev. Lett. 91247901
[39] Zhu L, Guan G and Li Y 2019 Appl. Math. Model. 70512
[40] Wang B and Du J 2007 Communication Studies Course 2, (ChongQing: Chong Qing University Press) pp. 92–93(in Chinese)
[41] Chen Y 2016 Data Mining Technology and Application 2(Beijing:Tsinghua University Press) pp. 94–96(in Chinese)
[42] Bruno G, Nicola P and Alessandro V 2011 PLoS One 6 e22656
[43] Dunbar R 1992 J. Hum. Evol. 22 469
[44] Mirman D 2014 Chin. Phys. B 23 050502
[45] Jiao B and Wu X Q 2017 Chin. Phys. B 26 028901
[46] Wang L Fu, Wang Q L, Kong Z and Jiang Y W 2010 Chin. Phys. B 19 080207
[47] Estrada E and Ross G J 2017 J. Theor. Biol. 438 46
[48] Watts D J and Strogatz S H 1998 Nature 393 440
[49] Barabasi A L, Albert R and Albert R 1999 Science 286 509
[50] Zhang X J and Yang H L 2016 Chin. Phys. B 25 060202
[51] Li M and Wang B H 2014 Chin. Phys. B 23 076402
[1] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[2] Immunization for scale-free networks by random walker
Hu Ke(胡柯) and Tang Yi(唐翌). Chin. Phys. B, 2006, 15(12): 2782-2787.
No Suggested Reading articles found!