Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050701    DOI: 10.1088/1674-1056/ac4908
GENERAL Prev   Next  

A self-powered and sensitive terahertz photodetection based on PdSe2

Jie Zhou(周洁)1,2, Xueyan Wang(王雪妍)1,2, Zhiqingzi Chen(陈支庆子)2, Libo Zhang(张力波)2, Chenyu Yao(姚晨禹)2, Weijie Du(杜伟杰)1, Jiazhen Zhang(张家振)2, Huaizhong Xing(邢怀中)2, Nanxin Fu(付南新)2, Gang Chen(陈刚)2, and Lin Wang(王林)1,2,†
1 Mathematics and Science College, Shanghai Normal University, Shanghai 200233, China;
2 Shanghai Institute of Technical Physics, State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  With the rapid development of terahertz technology, terahertz detectors are expected to play a key role in diverse areas such as homeland security and imaging, materials diagnostics, biology, medical sciences, and communication. Whereas self-powered, rapid response, and room temperature terahertz photodetectors are confronted with huge challenges. Here, we report a novel rapid response and self-powered terahertz photothermoelectronic (PTE) photodetector based on a low-dimensional material: palladium selenide (PdSe2). An order of magnitude performance enhancement was observed in photodetection based on PdSe2/graphene heterojunction that resulted from the integration of graphene and enhanced the Seebeck effect. Under 0.1-THz and 0.3-THz irradiations, the device displays a stable and repeatable photoresponse at room temperature without bias. Furthermore, rapid rise (5.0 μs) and decay (5.4 μs) times are recorded under 0.1-THz irradiation. Our results demonstrate the promising prospect of the detector based on PdSe2 in terms of air-stable, suitable sensitivity and speed, which may have great application in terahertz detection.
Keywords:  two-dimensional material      terahertz photodetector      photothermoelectric (PTE) effect  
Received:  02 November 2021      Revised:  17 December 2021      Accepted manuscript online: 
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  73.40.-c (Electronic transport in interface structures)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61521005,61875217,91850208,61474130,and 62075230),the Natural Science Foundation of Shanghai,China (Grant Nos.19ZR1465400,21ZR1473800,and 20142200600),and the Fund from Zhejiang Laboratory (Grant No.2021MB0AB01).
Corresponding Authors:  Lin Wang,     E-mail:
About author:  2022-1-7

Cite this article: 

Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林) A self-powered and sensitive terahertz photodetection based on PdSe2 2022 Chin. Phys. B 31 050701

[1] Siegel P H 2002 IEEE Trans. Microw Theory Tech. 50 910
[2] Horiuchi N 2010 Nat. Photon. 4 140
[3] Tonouchi M 2007 Nat. Photon. 1 97
[4] Nagatsuma T 2011 IEICE Electron. Expr. 8 1127
[5] Ajakaiye O, Grade J, Shin C and Kenny T 2007 Sens. Actuator A Phys. 134 575
[6] Miao W, Gao H, Wang Z, Zhang W, Ren Y, Zhou K M, Shi S C, Yu C, He Z Z, Liu Q B and Feng Z H 2018 J. Low Temp. Phys. 193 387
[7] Vining C B 2009 Nat. Mater. 8 83
[8] Boukai1 A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard III W A and Heath J R 2008 Nature 451 168
[9] Sun J F, Shi H L, Siegrist T and Singh D J 2015 Appl. Phys. Lett. 107 153902
[10] Lan Y S, Chen X R, Hu C E, Cheng Y and Chen Q F 2019 J. Mater. Chem. A 7 11134
[11] Wang C and Gao G Y 2020 J. Phys. Condens. Matter 32 205503
[12] Guo C, Guo W L, Xu H, Zhang L B, Chen G, D'olimpio G, Kuo C N, Lue C S, Wang L, Politano A, Chen X S and Lu W 2020 2$D Mater. 7 035026
[13] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[14] Liang Q J, Wang Q X, Zhang Q, Wei J X, Lim S X D, Zhu R, Hu J X, Wei W, Lee C K, Sow C H, Zhang W J and Wee A T S 2019 Adv. Mater. 31 1807609
[15] Wu D, Guo J W, Du J, Xia C X, Zeng L H, Tian Y Z, Shi Z F, Tian Y T, Li X J, Tsang Y H and Jie J S 2019 ACS Nano 13 9907
[16] Kang X L, Lan C Y, Li F Z, Wang W, . Yip S P, Meng Y, Wang F, Lai Z X, Liu C T and Ho J C 2021 Adv. Opt. Mater. 9 2001991
[17] Mak C H, Lin S H, Rogee L and Lau S P 2020 J. Phys. D: Appl. Phys. 53 065102
[18] Afzal A M, Iqbal M Z, Dastgeer G, Ahmad A U and Park B 2021 Adv. Sci. 8 2003713
[19] Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater. 29 1806878
[20] Castilla S, Terres B, Autore M, Viti L, Li J, Nikitin A Y, Vangelidis I, Watanabe K, Taniguchi T, Lidorikis E, Vitiello M S, Hillenbrand R, Tielrooij K J and Koppen F. H L 2019 Nano Lett. 19 2765
[21] He X W, Wang X, Nanot S, Cong K K, Jiang Q J, Kane A A, Goldsmith J E M, Hauge R H, Leonard F and Kono J 2013 ACS Nano 7 7271
[22] Xu X D, Gabor N M, Alden J S, van der Zande A and McEuen P L 2010 Nano Lett. 10 562
[23] Echtermeyer T J, Nene P S, Trushin M, Gorbachev R V, Eiden A L, Milana S, Sun Z, Schliemann J, Lidorikis E, Novoselov K S and Ferrari A C 2014 Nano Lett. 14 3733
[24] Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A and Vitiello M S 2015 Adv. Mater. 27 5567
[25] Leong E, Suess R J, Sushkov A B, Drew H D, Murphy T E and Mittendorff M 2017 Opt. Express 25 12666
[26] Zuev Y M, Chang W and Kim P 2009 Phys. Rev. Lett. 102 096807
[27] Liu C L, Wang L, Chen X S, Zhou J, Hu W D, Wang X R, Li J H, Huang Z M, Zhou W, Tang W W, Xu G Y, Wang S W and Lu W 2018 Carbon 130 233
[28] Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C H, Xu H, Chen G, Wang L, Zhang K, Chen X S and Lu W 2020 Adv. Sci. 7 1902699
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[4] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[8] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[9] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[10] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[11] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[12] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[13] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[14] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[15] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
No Suggested Reading articles found!