A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁)1,2, Xueyan Wang(王雪妍)1,2, Zhiqingzi Chen(陈支庆子)2, Libo Zhang(张力波)2, Chenyu Yao(姚晨禹)2, Weijie Du(杜伟杰)1, Jiazhen Zhang(张家振)2, Huaizhong Xing(邢怀中)2, Nanxin Fu(付南新)2, Gang Chen(陈刚)2, and Lin Wang(王林)1,2,†
1 Mathematics and Science College, Shanghai Normal University, Shanghai 200233, China; 2 Shanghai Institute of Technical Physics, State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract With the rapid development of terahertz technology, terahertz detectors are expected to play a key role in diverse areas such as homeland security and imaging, materials diagnostics, biology, medical sciences, and communication. Whereas self-powered, rapid response, and room temperature terahertz photodetectors are confronted with huge challenges. Here, we report a novel rapid response and self-powered terahertz photothermoelectronic (PTE) photodetector based on a low-dimensional material: palladium selenide (PdSe2). An order of magnitude performance enhancement was observed in photodetection based on PdSe2/graphene heterojunction that resulted from the integration of graphene and enhanced the Seebeck effect. Under 0.1-THz and 0.3-THz irradiations, the device displays a stable and repeatable photoresponse at room temperature without bias. Furthermore, rapid rise (5.0 μs) and decay (5.4 μs) times are recorded under 0.1-THz irradiation. Our results demonstrate the promising prospect of the detector based on PdSe2 in terms of air-stable, suitable sensitivity and speed, which may have great application in terahertz detection.
(Photodetectors (including infrared and CCD detectors))
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61521005,61875217,91850208,61474130,and 62075230),the Natural Science Foundation of Shanghai,China (Grant Nos.19ZR1465400,21ZR1473800,and 20142200600),and the Fund from Zhejiang Laboratory (Grant No.2021MB0AB01).
Corresponding Authors:
Lin Wang,E-mail:wanglin@mail.sitp.ac.cn
E-mail: wanglin@mail.sitp.ac.cn
About author: 2022-1-7
Cite this article:
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林) A self-powered and sensitive terahertz photodetection based on PdSe2 2022 Chin. Phys. B 31 050701
[1] Siegel P H 2002 IEEE Trans. Microw Theory Tech.50 910 [2] Horiuchi N 2010 Nat. Photon.4 140 [3] Tonouchi M 2007 Nat. Photon.1 97 [4] Nagatsuma T 2011 IEICE Electron. Expr.8 1127 [5] Ajakaiye O, Grade J, Shin C and Kenny T 2007 Sens. Actuator A Phys.134 575 [6] Miao W, Gao H, Wang Z, Zhang W, Ren Y, Zhou K M, Shi S C, Yu C, He Z Z, Liu Q B and Feng Z H 2018 J. Low Temp. Phys.193 387 [7] Vining C B 2009 Nat. Mater.8 83 [8] Boukai1 A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard III W A and Heath J R 2008 Nature451 168 [9] Sun J F, Shi H L, Siegrist T and Singh D J 2015 Appl. Phys. Lett.107 153902 [10] Lan Y S, Chen X R, Hu C E, Cheng Y and Chen Q F 2019 J. Mater. Chem. A7 11134 [11] Wang C and Gao G Y 2020 J. Phys. Condens. Matter32 205503 [12] Guo C, Guo W L, Xu H, Zhang L B, Chen G, D'olimpio G, Kuo C N, Lue C S, Wang L, Politano A, Chen X S and Lu W 2020 2$D Mater.7 035026 [13] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science353 aac9439 [14] Liang Q J, Wang Q X, Zhang Q, Wei J X, Lim S X D, Zhu R, Hu J X, Wei W, Lee C K, Sow C H, Zhang W J and Wee A T S 2019 Adv. Mater.31 1807609 [15] Wu D, Guo J W, Du J, Xia C X, Zeng L H, Tian Y Z, Shi Z F, Tian Y T, Li X J, Tsang Y H and Jie J S 2019 ACS Nano13 9907 [16] Kang X L, Lan C Y, Li F Z, Wang W, . Yip S P, Meng Y, Wang F, Lai Z X, Liu C T and Ho J C 2021 Adv. Opt. Mater.9 2001991 [17] Mak C H, Lin S H, Rogee L and Lau S P 2020 J. Phys. D: Appl. Phys.53 065102 [18] Afzal A M, Iqbal M Z, Dastgeer G, Ahmad A U and Park B 2021 Adv. Sci.8 2003713 [19] Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater.29 1806878 [20] Castilla S, Terres B, Autore M, Viti L, Li J, Nikitin A Y, Vangelidis I, Watanabe K, Taniguchi T, Lidorikis E, Vitiello M S, Hillenbrand R, Tielrooij K J and Koppen F. H L 2019 Nano Lett.19 2765 [21] He X W, Wang X, Nanot S, Cong K K, Jiang Q J, Kane A A, Goldsmith J E M, Hauge R H, Leonard F and Kono J 2013 ACS Nano7 7271 [22] Xu X D, Gabor N M, Alden J S, van der Zande A and McEuen P L 2010 Nano Lett.10 562 [23] Echtermeyer T J, Nene P S, Trushin M, Gorbachev R V, Eiden A L, Milana S, Sun Z, Schliemann J, Lidorikis E, Novoselov K S and Ferrari A C 2014 Nano Lett.14 3733 [24] Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A and Vitiello M S 2015 Adv. Mater.27 5567 [25] Leong E, Suess R J, Sushkov A B, Drew H D, Murphy T E and Mittendorff M 2017 Opt. Express25 12666 [26] Zuev Y M, Chang W and Kim P 2009 Phys. Rev. Lett.102 096807 [27] Liu C L, Wang L, Chen X S, Zhou J, Hu W D, Wang X R, Li J H, Huang Z M, Zhou W, Tang W W, Xu G Y, Wang S W and Lu W 2018 Carbon130 233 [28] Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C H, Xu H, Chen G, Wang L, Zhang K, Chen X S and Lu W 2020 Adv. Sci.7 1902699
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.