Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044201    DOI: 10.1088/1674-1056/ac306f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing

Yunpeng Liu(刘云鹏)1,†, Teng Zhang(张腾)1,2,†, Jian Su(苏健)3, Tao Jing(荆涛)1, Min Lin(蔺敏)4, Pei Li(李沛)1, and Xingpeng Yan(闫兴鹏)1,‡
1 Department of Information Communication, Army Academy of Armored Forces, Beijing 100072, China;
2 66132 Troop of the Chinese People's Liberation Army, Beijing, China;
3 96669 Troop of the Chinese People's Liberation Army, Beijing, China;
4 Department of Basic Education, Army Academy of Armored Forces, Beijing 100072, China
Abstract  We investigate how the splicing mode of a holographic element (hogel) affects the reconstruction of a 3D scene to improve the reconstruction resolution of a holographic stereogram fabricated using the effective perspective image segmentation and mosaicking method (EPISM). First, the effect of hogel spatial multiplexing on holographic recording and reconstruction is studied based on the mechanism of recording interference fringes in the holographic recording medium. Second, combined with the influence of multiple exposures on the hologram's diffraction efficiency, the diffraction efficiency of the holographic stereogram is analyzed in the spatial multiplexing mode. The holographic stereogram is then regarded as a special optical imaging system. The theory of spatial bandwidth product is adopted to describe the comprehensive resolution of the holographic stereogram, which explains why hogel spatial multiplexing can significantly improve the reconstruction resolution of a holographic stereogram. Compared with the traditional printing method under the same parameters in optical experiments, hogel spatial multiplexing has a lower diffraction efficiency but a higher quality of reconstructed image, consistent with the theoretical analysis.
Keywords:  holography      holographic stereogram      hogel spatial multiplexing  
Received:  20 August 2021      Revised:  11 October 2021      Accepted manuscript online:  18 October 2021
PACS:  42.40.Ht (Hologram recording and readout methods)  
  42.40.-i (Holography)  
  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB1104500), the National Natural Science Foundation of China (Grant No. 61775240), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201432).
Corresponding Authors:  Xingpeng Yan     E-mail:  yanxp02@gmail.com

Cite this article: 

Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏) Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing 2022 Chin. Phys. B 31 044201

[1] Zhang Y Z, Wang D Y, Wang Y X et al. 2011 Chin. Phys. Lett. 28 114209
[2] Liang M D, Chen L, Hu Y H et al. 2018 Chin. Phys. B 27 104202
[3] Blanche P A, Bablumian A, Voorakaranam R et al. 2010 Nature 468 80
[4] Choi Y S, Lee S, Jung J Y, Jeong K Y, Park H G and Seo M K 2020 Adv. Opt. Mater. 8 1901970
[5] Luo S, Chen K, Cao L, Liu G, He Q, Jin G, Zeng D and Chen Y 2005 Opt. Express 13 3123
[6] Su P, Sun D, Ma J, Luo Z, Zhang H, Feng S and Cao L 2021 Opt. Express 29 1275
[7] Tay S, Blanche P A, Voorakaranam R, Tunç A, Lin W, Rokutanda S, Gu T, Flores D, Wang P and Li G 2008 Nature 451 694
[8] Martínez-Corral M and Javidi B 2018 Adv. Opt. Photon. 10 512
[9] Yu X, Sang X, Chen D, Wang P, Gao X, Zhao T, Yan B, Yu C and Xu D 2010 Optik 126 4605
[10] Zhang H, Zhao Y, Cao L and Jin G 2015 Opt. Express 23 3901
[11] Liu P, Sun X, Zhao Y and Li Z 2019 Opt. Express 27 19583
[12] St Hilaire P 1994 Appl. Opt. 33 768
[13] Helseth L 2006 J. Opt. Soc. Am. A 23 816
[14] Jiang X, Pei C, Yan X, Liu J and Zhao K 2013 J. Opt. 15 125402
[15] Su J, Yan X, Jiang X, Huang Y, Chen Y and Zhang T 2018 Sci. Rep. 8 4488
[16] Yan X, Zhang T, Wang C, Liu Y, Wang Z, Wang X, Zhang Z, Lin M and Jiang X 2020 Sci. Rep. 10 1
[17] Hong K, Park S G, Yeom J, Kim J, Chen N, Pyun K, Choi C, Kim S, An J and Lee H S 2013 Opt. Express 21 14047
[18] Xue G, Liu J, Li X, Jia J, Zhang Z, Hu B and Wang Y 2014 Opt. Express 22 18473
[19] Stroud R W and Rhodes W T 1994 Appl. Opt. 33 3627
[20] Yan X, Chen Y, Su J, Zhang T, Chen Z, Chen S and Jiang X 2019 Appl. Opt. 58 A128
[1] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[2] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[3] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[4] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[5] Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(12): 123202.
[6] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠). Chin. Phys. B, 2020, 29(12): 124201.
[7] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[8] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[9] Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography
Ying Wang(王莹), Qi Liu(刘琦), Jun Wang(王君), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2018, 27(3): 034202.
[10] Backward rescattered photoelectron holography in strong-field ionization
Fujun Chen(陈富军), Ruxian Yao(姚汝贤), Jianghua Luo(罗江华), Changqing Wang(王长清). Chin. Phys. B, 2018, 27(10): 103202.
[11] Speckle reduction by selective spatial-domain mask in digital holography
Ming-Da Liang(梁明大), Li Chen(陈丽), Yi-Hua Hu(胡义华), Wei-Tao Lin(林伟涛), Yong-Hao Chen(陈永昊). Chin. Phys. B, 2018, 27(10): 104202.
[12] Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films
Hong-Yue Gao(高洪跃), Pan Liu(刘攀), Chao Zeng(曾超), Qiu-Xiang Yao(姚秋香), Zhiqiang Zheng(郑志强), Jicheng Liu(刘吉成), Huadong Zheng(郑华东), Ying-Jie Yu(于瀛洁), Zhen-Xiang Zeng(曾震湘), Tao Sun(孙涛). Chin. Phys. B, 2016, 25(9): 094205.
[13] Phase-only stereoscopic hologram calculation based on Gerchberg-Saxton iterative algorithm
Xinyi Xia(夏心怡), Jun Xia(夏军). Chin. Phys. B, 2016, 25(9): 094204.
[14] Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening
Wei Liu(刘玮), Chao Li(李超), Zhao-Yang Sun(孙兆阳), Yu Zhao(赵宇), Shi-You Wu(吴世有), Guang-You Fang(方广有). Chin. Phys. B, 2016, 25(8): 088402.
[15] Characteristic of femtosecond laser-pulsed digital holography
Shi Bing-Chuan (石炳川), Wang Xiao-Lei (王晓雷), Guo Wen-Gang (郭文刚), Song Li-Pei (宋丽培). Chin. Phys. B, 2015, 24(8): 084202.
No Suggested Reading articles found!