|
|
Optical scheme to demonstrate state-independent quantum contextuality |
Ya-Ping He(何亚平)1,2,†, Deng-Ke Qu(曲登科)1,2,†,‡, Lei Xiao(肖磊)2, Kun-Kun Wang(王坤坤)2,3, and Xiang Zhan(詹翔)4,5 |
1 Department of Physics, Southeast University, Nanjing 211189, China; 2 Beijing Computational Science Research Center, Beijing 100084, China; 3 School of Physics and Materials Science, Anhui University, Hefei 230601, China; 4 School of Science, Nanjing University of Science and Technology, Nanjing 210094, China; 5 MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The contradiction between classical and quantum physics can be identified through quantum contextuality, which does not need composite systems or spacelike separation. Contextuality is proven either by a logical contradiction between the noncontextuality hidden variable predictions and those of quantum mechanics or by the violation of noncontextual inequality. We propose an experimental scheme of state-independent contextual inequality derived from the Mermin proof of the Kochen-Specker (KS) theorem in eight-dimensional Hilbert space, which could be observed either in an individual system or in a composite system. We also show how to resolve the compatibility problems. Our scheme can be implemented in optical systems with current experiment techniques.
|
Received: 13 July 2021
Revised: 24 August 2021
Accepted manuscript online: 01 September 2021
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1930402). L.X. acknowledges support from the Project Funded by China Postdoctoral Science Foundation (Grant Nos. 2020M680006 and 2021T140045). X.Z. acknowledges support from the National Natural Science Foundation of China (Grant No. 12004184) and the Natural Science Foundation of Jiangsu Province, China (Grants No. BK20190428). |
Corresponding Authors:
Deng-Ke Qu
E-mail: dkqu@seu.edu.cn
|
Cite this article:
Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔) Optical scheme to demonstrate state-independent quantum contextuality 2022 Chin. Phys. B 31 030305
|
[1] Einstein A, Podolsky B and Rosen R 1935 Phys. Rev. 47 777 [2] Bell J S 1964 Physics (Long Island City, N.Y.) 1 195 [3] Specker E 1960 Dialectica 14 239 [4] Bell J S 1966 Rev. Mod. Phys. 38 447 [5] Kochen S and Specker E P 1967 J. Math. Mech. 17 59 [6] Klyachko A A, Ali Can M, Binicioǧlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403 [7] Lapkiewicz R, Li P, Schaeff C, Langford N K, Ramelow S, Wieśniak M and Zeilinger A 2011 Nature 474 490 [8] van Dam S B, Cramer J, Taminiau T H and Hanson R 2019 Phys. Rev. Lett. 123 050401 [9] Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2009 Nature 460 494 [10] Zhang X, Um M, Zhang J, An S, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401 [11] Bartosik H, Klepp J, Schmitzer C, Sponar S, Cabello A, Rauch H and Hasegawa Y 2009 Phys. Rev. Lett. 103 040403 [12] Cabello A, Filipp S, Rauch H and Hasegawa Y 2008 Phys. Rev. Lett. 100 130404 [13] Huang Y F, Li C F, Zhang Y S, Pan J W and Guo G C 2003 Phys. Rev. Lett. 90 250401 [14] Liu B H, Huang Y F, Gong Y X, Sun F W, Zhang Y S, Li C F and Guo G C 2009 Phys. Rev. A 80 044101 [15] Zu C, Wang Y X, Deng D L, Chang X Y, Liu K, Hou P Y, Yang H X and Duan L M 2012 Phys. Rev. Lett. 109 150401 [16] Xiao Y, Xu Z P, Li Q, Xu J S, Sun K, Cui J M, Zhou Z Q, Su H Y, Cabello A, Chen J L, Li C F and Guo G C 2018 Opt. Express 26 32 [17] Zhan X, Zhang X, Li J, Zhang Y S, Sanders B C and Xue P 2016 Phys. Rev. Lett. 116 090401 [18] Zhan X, Cavalcanti E G, Li J, Bian Z H, Zhang Y S, Wiseman H M and Xue P 2017 Optica 4 966 [19] Zhan X, Kurzyński P, Kaszlikowski D, Wang K K, Bian Z H, Zhang Y S and Xue P 2017 Phys. Rev. Lett. 119 220403 [20] Qu D K, Kurzyński P, Kaszlikowski D, Raeisi S, Xiao L, Wang K K, Zhan X and Xue P 2020 Phys. Rev. A 101 060101 [21] Li T, Zhang X, Zeng Q, Wang B and Zhang X D 2018 Opt. Express 26 11959 [22] Mazurek M D, Pusey M F, Kunjwal R, Resch K J and Spekkens R W 2016 Nat. Commun. 7 11780 [23] Zhang A N, Xu H C, Xie J, Zhang H, Smith B J, Kim M S and Zhang L J 2019 Phys. Rev. Lett. 122 080401 [24] Mermin N D 1990 Phys. Rev. Lett. 65 3373 [25] Mermin N D 1993 Rev. Mod. Phys. 65 803 [26] Cabello A 2008 Phys. Rev. Lett. 101 210401 [27] Xiao L, Deng T S, Wang K K, Wang Z, Yi W and Xue P 2021 Phys. Rev. Lett. 126 230402 [28] Wang K K, Xiao L, Budich J C, Yi W and Xue P 2021 Phys. Rev. Lett. 127 026404 [29] Wang K K, Qiu X Z, Xiao L, Zhan X, Bian Z H, Yi W and Xue P 2019 Phys. Rev. Lett. 122 020501 [30] Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J and Sanders B C 2015 Phys. Rev. Lett. 114 140502 [31] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 23 110307 [32] Qin H and Xue P 2013 Chin. Phys. B 23 010301 [33] Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501 [34] Xiao L, Wang K K, Zhan X, Bian Z H, Kawabata K, Ueda M, Yi W and Xue P 2019 Phys. Rev. Lett. 123 230401 [35] Zhan X, Qu D K, Wang K K, Xiao L and Xue P 2021 Phys. Rev. A 104 L020201 [36] Qu D K, Kálmán O, Zhu G Y, Xiao L, Wang K K, Kiss T and Xue P 2021 New J. Phys. 23 083008 [37] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117 [38] Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 [39] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312 [40] Wang K K, Wang X P, Zhan X, Bian Z H, Li J, Sanders B C and Xue P 2018 Phys. Rev. A 97 042112 [41] Wang K K, Knee G C, Zhan X, Bian Z H, Li J and Xue P 2017 Phys. Rev. A 95 032122 [42] Huang Y F, Li M, Cao D Y, Zhang C, Zhang Y S, Liu B H, Li C F and Guo G C 2013 Phys. Rev. A 87 052133 [43] Liu B H, Hu X M, Chen J S, Huang Y F, Han Y J, Li C F, Guo G C and Cabello A 2016 Phys. Rev. Lett. 117 220402 [44] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602 [45] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501 [46] Lin Q, Qin H, Wang K K, Xiao L and Xue P 2020 Chin. Phys. B 29 110303 [47] Qin H and Xue P 2016 Chin. Phys. B 25 010501 [48] Xue P and Bian Z H 2016 Chin. Phys. B 25 080305 [49] Bian Z H, Qin H, Zhan X, Li J and Xue P 2016 Chin. Phys. B 25 020307 [50] Luo H, Zhan X, Zhang P and Xue P 2016 Chin. Phys. B 25 110304 [51] Zhang R, Xu Y Q and Xue P 2015 Chin. Phys. B 24 010303 [52] Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C and Wolkow R A 2010 New J. Phys. 12 083018 [53] Xue P, Li C F and Guo G C 2002 Phys. Rev. A 65 022317 [54] Zhang C, Huang Y F, Wang Z, Liu B H, Li C F and Guo G C 2015 Phys. Rev. Lett. 115 260402 [55] Li J, Liu T J, Wang S, Jebarathinam C and Wang Q 2019 Opt. Express 27 13559 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|