Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机)†
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract With the aid of the Painlevé analysis, we obtain residual symmetries for a new (3+1)-dimensional generalized Kadomtsev—Petviashvili (gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the (3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074343).
Corresponding Authors:
Ji Lin
E-mail: linji@zjnu.edu.cn
Cite this article:
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机) Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation 2022 Chin. Phys. B 31 030201
[1] Nayfeh A H and Hassan S D 1971 J. Fluid Mech.48 463 [2] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys.61 763 [3] Wang W, Yao R X and Lou S Y 2020 Chin. Phys. Lett.37 100501 [4] Kamchatnov A M 1997 Phys. Rep.286 199 [5] Leblond H and Mihalache D 2010 Phys. Rep.523 61 [6] Wang B, Zhang Z and Li B 2020 Chin. Phys. Lett.37 030501 [7] Nakamura Y and Tsukabayashi I 1984 Phys. Rev. Lett.52 2356 [8] Shen Y, Tian B, Liu S H and Yang D Y 2021 Phys. Scripta96 075212 [9] Jin X W and Lin J 2020 J. Magn. Magn. Mater.514 167192 [10] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett.118 190401 [11] Kadomtsev B B and Petviashvili V I 1970 Dokl. Akad. Nauk SSSR192 753 [12] Zhang Z, Guo Q, Li B and Chen J C 2021 Commun. Nonlinear Sci.101 105866 [13] Leblond H, Kremer D and Mihalache D 2010 Phys. Rev. A81 033824 [14] Zhou Q 2022 Chin. Phys. Lett.39 010501 [15] Lou S Y and Hu X B 1997 J. Math. Phys.38 6401 [16] Oevel W and Fuchssteiner B 1982 Phys. Lett. A88 323 [17] Ma W X 2020 Opt. Quantum Electron.52 511 [18] Wang X B, Tian S F, Qin C Y and Zhang T T 2017 Appl. Math. Lett.72 58 [19] Mao J J, Tian S F, Zou L and Zhang T T 2019 Nonlinear Dyn.95 3005 [20] Guan X, Liu W J, Zhou Q and Biswas A 2020 Appl. Math. Comput.366 124757 [21] Ma Y L, Wazwaz A M and Li B Q 2021 Math. Comput. Simul.187 505 [22] Ma Y L, Wazwaz A M and Li B Q 2021 Nonlinear Dyn.104 1581 [23] Ablowitz M J and Clarkson P A 1991 Solitons, nolinear evolution equations and inverse scattering (Cambridge:Cambridge University Press) 149 [24] Wang J, Su T, Geng X G and Li R M 2020 Nonlinear Dyn.101 597 [25] Hirota R and Ito M 1981 J. Phys. Soc. Jpn.50 338 [26] Ma W X, Yong X L and Lü X 2021 Wave Motion103 102719 [27] Cai Y J, Wu J W, Hu L T and Lin J 2021 Phys. Scripta96 095212 [28] Wang H F and Zhang Y F 2020 Chin. Phys. B29 040501 [29] Liu Y K and Li B 2017 Chin. Phys. Lett.34 010202 [30] Yin K H, Cheng X P and Lin J 2021 Chin. Phys. Lett.38 080201 [31] Olver P J 1986 Applications of Lie groups to differential equations (New York:Springer-Verlag) [32] Keane A J, Mushtaq A and Wheatland M S 2011 Phys. Rev. E83 066407 [33] Kim E, Li F, Chong C, Theocharis G, Yang J and Kevrekidis P G 2015 Phys. Rev. Lett.114 118002 [34] Feng L L, Tian S F and Zhang T T 2020 Bull. Malays. Math. Sci. Soc.43 141 [35] Zhang Z, Qi Z Q and Li B 2021 Appl. Math. Lett.116 107004 [36] Yang Y Q, Suzuki T and Wang J Y 2021 Commun. Nonlinear Sci.95 105626 [37] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A:Math. Theor.45 155209 [38] Cheng X P, Chen C L and Lou S Y 2014 Wave Motion51 1298 [39] Tang X Y, Hao X Z and Liang Z F 2017 Comput. Math. Appl.74 1311 [40] Huang L L and Chen Y 2018 Nonlinear Dyn.92 221 [41] Hu H C and Lu Y H 2020 Chin. Phys. B29 040201 [42] Wu J W, Cai Y J and Lin J 2021 Commun. Theor. Phys.73 065002 [43] Huang L L and Chen Y 2016 Chin. Phys. B25 060201 [44] Hu H C, Hu X and Feng B F 2016 Z. Naturforsch. A71 235 [45] Xia Y R, Xin X P and Zhang S L 2017 Chin. Phys. B26 030202 [46] Hu X R and Chen Y 2015 Chin. Phys. B24 090203 [47] Chen J C, Ma Z Y and Hu Y H 2017 Chin. Phys. Lett.34 010201 [48] Liu P, Xu H R and Yang J R 2020 Acta Phys. Sin.69 010203 (in Chinese) [49] Ren B and Lin J 2020 Phys. Scripta95 075202 [50] Ren B, Lin J and Lou Z M 2020 Appl. Math. Lett.105 106326 [51] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E85 056607 [52] Tang X Y, Liang Z F and Wang J Y 2015 J. Phys. A:Math. Theor.48 285204 [53] Lin J, Jin X W, Gao X L and Lou S Y 2018 Commun. Theor. Phys.70 119 [54] Ren B 2017 Commun. Nonlinear Sci.42 456 [55] Liu S J, Tang X Y and Lou S Y 2018 Chin. Phys. B27 060201 [56] Wang X B, Jia M and Lou S Y 2021 Chin. Phys. B30 010501 [57] Jin X W and Lin J 2020 J. Magn. Magn. Mater.502 166590 [58] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of symmetry methods to partial differential equations (New York:Springer) [59] Lou S Y and Hu X B 1997 J. Phys. A:Math. Gen.30 L95 [60] Cheng X P, Yang Y Q, Ren B and Wang J Y 2019 Wave Motion86 150 [61] Bluman G W 2002 Symmetry and integration methods for differential equations (New York:Springer) [62] Shin H J 2001 Phys. Rev. E63 026606
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.