|
|
Vacuum-gap-based lumped element Josephson parametric amplifier |
Sishi Wu(吴思诗)1, Dengke Zhang(张登科)2,3, Rui Wang(王锐)2,3, Yulong Liu(刘玉龙)4,†, Shuai-Peng Wang(王帅鹏)1, Qichun Liu(刘其春)4, J S Tsai(蔡兆申)2,3, and Tiefu Li(李铁夫)4,5,‡ |
1 Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China; 2 Department of Physics, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; 3 RIKEN Center for Quantum Computing(RQC), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; 4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 5 School of Integrated Circuits, and Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China |
|
|
Abstract We propose a lumped element Josephson parametric amplifier with vacuum-gap-based capacitor. The capacitor is made of quasi-floating aluminum pad and on-chip ground. We take a fabrication process compatible with air-bridge technology, which makes our design adaptable for future on-chip integrated quantum computing system. Further engineering the input impedance, we obtain a gain above 20 dB over 162-MHz bandwidth, along with a quasi quantum-limit noise performance. This work should facilitate the development of quantum information processing and integrated superconducting circuit design.
|
Received: 08 June 2021
Revised: 19 August 2021
Accepted manuscript online: 18 September 2021
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Cp
|
(Josephson devices)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301200), the National Natural Science Foundation of China (Grant Nos. 62074091, 12004044, and U1930402), the Science Challenge Project (Grant No. TZ2018003), the Fund from the New Energy and Industrial Technology Development Organization (Grant No. JPNP16007), and Japan Science and Technology Agency (Moonshot R&D, Grant No. JPMJMS2067 and CREST, Grant No. JPMJCR1676). |
Corresponding Authors:
Yulong Liu, Tiefu Li
E-mail: liuyl@baqis.ac.cn;litf@tsinghua.edu.cn
|
Cite this article:
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫) Vacuum-gap-based lumped element Josephson parametric amplifier 2022 Chin. Phys. B 31 010306
|
[1] Zimmer H 1967 Appl. Phys. Lett. 10 193 [2] Yurke B, Corruccini L, Kaminsky P, Rupp L, Smith A, Silver A, Simon R and Whittaker E 1989 Phys. Rev. A 39 2519 [3] Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J 2008 Appl. Phys. Lett. 93 042510 [4] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 [5] Laflamme C and Clerk A A 2011 Phys. Rev. A 83 033803 [6] Wendin G 2017 Rep. Prog. Phys. 80 106001 [7] Lin Z, Inomata K, Oliver W, Koshino K, Nakamura Y, Tsai J and Yamamoto T 2013 Appl. Phys. Lett. 103 132602 [8] Schaal S, Ahmed I, Haigh J, Hutin L, Bertrand B, Barraud S, Vinet M, Lee C M, Stelmashenko N, Robinson J, et al. 2020 Phys. Rev. Lett. 124 067701 [9] Crescini N, Alesini D, Braggio C, Carugno G, D Agostino D, Di Gioacchino D, Falferi P, Gambardella U, Gatti C, Iannone G, et al. 2020 Phys. Rev. Lett. 124 171801 [10] Castellanos-Beltran M A, Irwin K D, Hilton G C, et al. 2008 Nat. Phys. 4 929 [11] Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J, Filipp S and Wallraff A 2011 Phys. Rev. Lett. 107 113601 [12] Riste D, Dukalski M, Watson C, De Lange G, Tiggelman M, Blanter Y M, Lehnert K W, Schouten R and DiCarlo L 2013 Nature 502 350 [13] Preskill J 2018 Quantum 2 79 [14] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A, et al. 2019 Nature 574 505 [15] Jurcevic P, Javadi-Abhari A, Bishop L S, et al. 2021 Quantum Sci. Technol. 6 025020 [16] Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V and Estève D 2014 Phys. Rev. B 89 214517 [17] Macklin C, O brien K, Hover D, Schwartz M, Bolkhovsky V, Zhang X, Oliver W and Siddiqi I 2015 Science 350 307 [18] Zorin A 2019 Phys. Rev. Appl. 12 044051 [19] Hatridge M, Vijay R, Slichter D, Clarke J and Siddiqi I 2011 Phys. Rev. B 83 134501 [20] Mutus J Y, White T C, Jeffrey E, Sank D, Barends R, Bochmann J, Chen Y, Chen Z, Chiaro B, Dunsworth A, et al. 2013 Appl. Phys. Lett. 103 122602 [21] Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, et al. 2014 Appl. Phys. Lett. 104 263513 [22] Elo T, Abhilash T, Perelshtein M, Lilja I, Korostylev E and Hakonen P 2019 Appl. Phys. Lett. 114 152601 [23] Huang K, Guo Q, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X and Zheng D 2017 Chin. Phys. B 26 094203 [24] Bockstiegel C, Gao J, Vissers M, Sandberg M, Chaudhuri S, Sanders A, Vale L, Irwin K and Pappas D 2014 J. Low Temp. Phys. 176 476 [25] Duan P, Jia Z, Zhang C, et al. 2021 Appl. Phys. Express 14 042011 [26] Pozar D M 2012 Microwave Engineering (New York: John Wiley & Sons) pp. 26-30 [27] Roy T, Kundu S, Chand M, Vadiraj A, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A and Vijay R 2015 Appl. Phys. Lett. 107 262601 [28] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, Tian Y and Zhao S P 2019 Chin. Phys. B 28 110303 [29] Lu Y P, Zuo Q, Pan J Z, et al. 2021 Chin. Phys. B 30 068504 [30] Xue H, Lin Z, Jiang W, Niu Z, Liu K, Peng W and Wang Z 2021 Chin. Phys. B 30 068503 [31] Grebel J, Bienfait A, Dumur É, Chang H S, Chou M H, Conner C, Peairs G, Povey R, Zhong Y and Cleland A 2021 Appl. Phys. Lett. 118 142601 [32] Cicak K, Li D, Strong J A, Allman M S, Altomare F, Sirois A J, Whittaker J D, Teufel J D and Simmonds R W 2010 Appl. Phys. Lett. 96 093502 [33] Eichler C and Wallraff A 2014 EPJ Quantum Technol. 1 1 [34] Yurke B and Buks E 2006 J. Light Technol. 24 5054 [35] Krantz P, Reshitnyk Y, Wustmann W, Bylander J, Gustavsson S, Oliver W D, Duty T, Shumeiko V and Delsing P 2013 New J. Phys. 15 105002 [36] Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Y, Chiaro B, Dunsworth A, Jeffrey E, Mutus J, et al. 2014 Appl. Phys. Lett. 104 052602 [37] Wustmann W and Shumeiko V 2013 Phys. Rev. B 87 184501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|