Special Issue:
SPECIAL TOPIC — Non-Hermitian physics
|
TOPICAL REVIEW—Non-Hermitian physics |
Prev
Next
|
|
|
Efficient and stable wireless power transfer based on the non-Hermitian physics |
Chao Zeng(曾超)1, Zhiwei Guo(郭志伟)1,†, Kejia Zhu(祝可嘉)2, Caifu Fan(范才富)1, Guo Li(李果)1, Jun Jiang(江俊)3, Yunhui Li(李云辉)1, Haitao Jiang(江海涛)1, Yaping Yang(羊亚平)1, Yong Sun(孙勇)1,‡, and Hong Chen(陈鸿)1,§ |
1 MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China; 2 Department of Electrical Engineering, Tongji University, Shanghai 201804, China; 3 School of Automotive Studies, Tongji University, Shanghai 210804, China |
|
|
Abstract As one of the most attractive non-radiative power transfer mechanisms without cables, efficient magnetic resonance wireless power transfer (WPT) in the near field has been extensively developed in recent years, and promoted a variety of practical applications, such as mobile phones, medical implant devices and electric vehicles. However, the physical mechanism behind some key limitations of the resonance WPT, such as frequency splitting and size-dependent efficiency, is not very clear under the widely used circuit model. Here, we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics, which starts from a completely different avenue (utilizing loss and gain) to introduce novel functionalities to the resonance WPT. From the perspective of non-Hermitian photonics, the coherent and incoherent effects compete and coexist in the WPT system, and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry. Based on this basic physical framework, some optimization schemes are proposed, including using nonlinear effect, using bound states in the continuum, or resorting to the system with high-order parity-time symmetry. Moreover, the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection. Therefore, the non-Hermitian physics can not only exactly predict the main results of current WPT systems, but also provide new ways to solve the difficulties of previous designs.
|
Received: 27 August 2021
Revised: 03 November 2021
Accepted manuscript online: 10 November 2021
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
88.80.ht
|
(Wireless power transmission)
|
|
11.30.Er
|
(Charge conjugation, parity, time reversal, and other discrete symmetries)
|
|
Fund: This research was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301101), the National Natural Science Foundation of China (Grant Nos. 91850206, 61621001, 2004284, 11674247, and 11974261), Shanghai Science and Technology Committee, China (Grant Nos. 18JC1410900 and 18ZR1442900), the China Postdoctoral Science Foundation (Grant Nos. 2019TQ0232 and 2019M661605), the Shanghai Super Postdoctoral Incentive Program, and Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Zhiwei Guo, Yong Sun, Hong Chen
E-mail: 2014guozhiwei@tongji.edu.cn;yongsun@tongji.edu.cn;hongchen@tongji.edu.cn
|
Cite this article:
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿) Efficient and stable wireless power transfer based on the non-Hermitian physics 2022 Chin. Phys. B 31 010307
|
[1] Kurs A Karalis A, Moffatt R, Joannopoulos J D, Fisher P and Soljacic M 2007 Science 317 83 [2] Song M, Belov P and Kapitanova P 2017 Appl. Phys. Rev. 4 021102 [3] Zhou J L, Zhang B, Xiao W X, Qiu D Y and Chen Y F 2019 IEEE Trans. Ind. Electron. 66 4097 [4] Wu L H, Zhang B and Zhou J L 2020 IEEE Trans. Power Electron. 35 12497 [5] Wei Z and Zhang B 2021 IEEE Trans. Power Electron. 36 11135 [6] Song M, Jayathurathnage P, Zanganeh E, Krasikova M, Smirnov P, Belov P, Kapitanova P, Simovski C, Tretyakov S and Krasnok A 2021 Nat. Electron. 4 707 [7] Beh T C, Kato M, Imura T, Oh S and Hori Y 2013 IEEE Trans. Ind. Electron. 60 3689 [8] Lim Y, Tang H, Lim S and Park J 2014 IEEE Trans. Power Electron. 29 4403 [9] Zhong W X and Hui S Y R 2015 IEEE Trans. Power Electron 30 4025 [10] Mai R K, Liu Y R, Li Y, Yue P F, Cao G Zand He Z Y 2018 IEEE Trans. Power Electron. 33 716 [11] Guo Z W, Jiang H T, Li Y H, Chen H and Agarwal G S 2018 Opt. Express 26 627 [12] Zhong W X, Lee C K and Hui S Y R 2013 IEEE Trans. Ind. Electron. 60 261 [13] Guo Z, Long Y, Jiang H, Ren J and Chen H 2021 Adv. Photon. 3 036001 [14] Xie Y Z, Zhang Z Y, Lin Y, Feng T H and Xu Y 2021 Phys. Rev. Appl. 15 044024 [15] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005 [16] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752 [17] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H and Rotter S 2018 Nat. Phys. 14 11 [18] Wiersig J 2020 Photon. Res. 8 1457 [19] Assawaworrarit S, Yu X and Fan S 2017 Nature 546 387 [20] Rüter C E Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192 [21] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167 [22] Sun Y, Tan W, Li H Q, Li J and Chen H 2014 Phys. Rev. Lett. 112 143903 [23] Bender C M, Berry M V and Mandilara A 2002 J. Phys. A 35 L467 [24] Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101(R) [25] Schindler J, Lin Z, Lee J M, Ramezani H, Ellis F M and Kottos T 2012 J. Phys. A 45 444029 [26] Sample A P, Meyer D A and Smith J R 2011 IEEE Trans. Ind. Electron. 58 544 [27] Neumann J V and Wigner E P 1929 Phys. Z. 30 465 [28] Bulgakov E N and Sadreev A F 2008 Phys. Rev. B 78 075105 [29] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W and Hu C M 2020 Phys. Rev. Lett. 125 147202 [30] Kim J, Son H C, Kim K H and Park Y J 2011 IEEE Antennas Wireless Propag. Lett. 10 389 [31] Moon S, Kim B C, Cho S Y, Ahn C H and Moon G W 2014 IEEE Trans. Ind. Electron. 61 5861 [32] Zhong W X, Zhang C, Liu X and Hui S Y R 2015 IEEE Trans. Power Electron. 30 933 [33] Lee J, Lee K and Cho D H 2017 IEEE Trans. Power Electron. 32 3297 [34] Lee K and Chae S H 2018 IEEE Trans. Power Electron. 33 2484 [35] Wang B N, Teo K H, Nishino T, Yerazunis W, Barnwell J and Zhang J Y 2011 Appl. Phys. Lett. 98 254101 [36] Urzhumov Y and Smith D R 2011 Phys. Rev. B 83 205114 [37] Lipworth G, Ensworth J, Seetharam K, Huang D, Lee J S, Schmalenberg P, Nomura T, Reynolds M S, Smith D R and Urzhumov Y 2015 Sci. Rep. 4 3642 [38] Wu Q, Li Y H, Gao N, Yang F, Chen Y Q, Fang K, Zhang Y W and Chen H 2015 Europhys. Lett. 109 68005 [39] Guo Z W, Jiang H T and Chen H 2020 J. Appl. Phys. 127 071101 [40] Smith D R, Gowda V R, Yurduseven O, Larouche S, Lipworth G, Urzhumov Y and Reynolds M S 2017 J. Appl. Phys. 121 014901 [41] Yu S X, Liu H X and Li L 2019 IEEE Trans. Ind. Electron. 66 3993 [42] Guo Z, Jiang H and Chen H 2022 J. Phys. D: Appl. Phys. 55 083001 [43] Song M Z, Baryshnikova K, Markvart A, Belov P, Nenasheva E, Simovski C and Kapitanova P 2019 Phys. Rev. Appl. 11 054046 [44] Zeng C, Sun Y, Li G, Li Y H, Jiang H T, Yang Y P and Chen H 2020 Phys. Rev. Appl. 13 034054 [45] Sakhdari M, Hajizadegan M and Chen P Y 2020 Phys. Rev. Res. 2 013152 [46] Saha C, Anya I, Alexandru C and Jinks R 2018 Appl. Phys. Lett. 112 263902 [47] Lee C K, Zhong W X and Hui S Y R 2012 IEEE Trans. Power Electron. 27 1905 [48] Zhong W X, Lee C K and Hui S Y 2012 IEEE Trans. Power Electron. 27 4750 [49] Zhong W X, Lee C K and Hui S Y R 2013 IEEE Trans. Ind. Electron. 60 261 [50] Lu L, Joannopoulos J D and Soljacic M 2014 Nat. Photon. 8 821 [51] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006 [52] Zhu W, Fang X, Li D, Sun Y, Li Y, Jing Y and Chen H 2018 Phys. Rev. Lett. 121 124501 [53] Guo Z W, Zhang T Z, Song J, Jiang H T and Chen H 2021 Photon. Res. 9 574 [54] Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H and Chen H 2018 Opt. Express 26 12891 [55] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698 [56] Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H and Chen H 2020 Phys. Rev. B 101 165427 [57] Guo Z, Jiang J, Jiang H T, Ren J and Chen H 2021 Phys. Rev. Res. 3 013122 [58] Feis J, Stevens C J and Shamonina E 2020 Appl. Phys. Lett. 117 134106 [59] Song J, Yang F Q, Guo Z W, Wu X, Zhu K J, Jiang J, Sun Y, Li Y H, Jiang H T and Chen H 2021 Phys. Rev. Appl. 15 014009 [60] Zhang L, Yang Y H, Jiang Z, Chen Q L, Yan Q H, Wu Z Y, Zhang B L, Huangfu J T and Chen H S 2021 Sci. Bull. 66 974 [61] Guo Z W, Jiang H T, Sun Y, Li Y H and Chen H 2018 Opt. Lett. 43 5142 [62] Yang F, Song J, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Jiang H, Li Y and Chen H 2021 Opt. Express 29 7844 [63] Zhang X, Ding K, Zhou X, Xu J and Jin D 2019 Phys. Rev. Lett. 123 237202 [64] Zhang F, Feng Y, Chen X, Ge L and Wan W 2020 Phys. Rev. Lett. 124 053901 [65] Lu C C, Wang C Y, Xiao M, Zhang Z Q and Chan C T 2021 Phys. Rev. Lett. 126 113902 [66] Lin Z, Ding L, Ke S L and Li X 2021 Opt. Lett. 46 3512 [67] Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R and Szameit A 2020 Science 368 311 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|