ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber |
Xu Han(韩旭)1, Ying Han(韩颖)1,†, Chao Mei(梅超)2, Jing-Zhao Guan(管景昭)1, Yan Wang(王彦)1, Lin Gong(龚琳)1, Jin-Hui Yuan(苑金辉)2, and Chong-Xiu Yu(余重秀)2 |
1 Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications(BUPT), Beijing 100876, China |
|
|
Abstract We numerically investigate the mid-infrared (MIR) supercontinuum (SC) and SC-based optical frequency comb (OFC) generations when the three optical modes (LP01, LP02, and LP12) are considered in a multimode tellurite photonic crystal fiber (MM-TPCF). The geometrical parameters of the MM-TPCF are optimized to support the multimode propagation and obtain the desired dispersion characteristics of the considered three optical modes. When the pump pulse with center wavelength λ = 2.5 μm, width T = 80 fs, and peak power P = 18 kW is coupled into the anomalous dispersion region of the LP01, LP02, and LP12 modes of the MM-TPCF, the -40-dB bandwidth of the generated MIR SCs can be up to 2.56, 1.39, and 1.12 octaves, respectively, along with good coherence. Moreover, the nonlinear dynamics of the generated SCs are analyzed. Finally, the MIR SCs-based OFCs are demonstrated when a train of 50 pulses at 1-GHz repetition rate is used as the pump source and launched into the MM-TPCF.
|
Received: 06 January 2021
Revised: 18 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.70.Km
|
(Infrared transmitting materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074331, 61875238, and 61971373), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2021203002, F2019203549, and F2020203050), and the Science and Technology Support Projects of Research and Development Plans of Qinhuangdao City (Grant No. 202004A001). |
Corresponding Authors:
Ying Han
E-mail: hanyingysu@163.com
|
Cite this article:
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀) Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber 2021 Chin. Phys. B 30 094207
|
[1] Yuan J H, Kang Z, Li F, Zhang X, Sang X, Wu Q, Yan B, Wang K, Zhou X, Zhong K, Zhou G, Yu C, Lu C, Tam Y and Wai P K A 2017 J. Lightwave Technol. 35 2994 [2] Thorpe M J, Hudson D D, Moll K D, Lasri J and Ye J 2007 Opt. Lett. 32 307 [3] Hartl I, Li X, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608 [4] Torres-Company V, Schröder J, Fülöp A, Mazur M, Lundberg L, Helgason Ó B, Karlsson M and Andrekson P A 2019 J. Lightwave Technol. 37 1663 [5] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135 [6] North T and Rochette M 2012 Opt. Lett. 37 2799 [7] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497 [8] Liao M, Yan X, Gao W, Duan Z, Qin G, Suzuki T and Ohishi Y 2011 Opt. Express 19 15389 [9] Price J H V, Belardi W, Monro T M, Malinowski A, Piper A and Richardson D J 2002 Opt. Express 10 382 [10] Agrawal G 2013 Nonlinear Fiber Optics, 5th edn. (San Francisco: Academic Press) p. 388 [11] Dudley J M and Taylor J R 2009 Nat. Photonics 3 85 [12] Kaminski C F, Watt R S, Elder A D, Frank J H and Hult J 2008 Appl. Phys. B 92 367 [13] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J and Coen S 2002 J. Opt. Soc. Am. B 19 765 [14] Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight J C, Wadsworth W J, Russell P St J and Korn G 2002 Phys. Rev. Lett. 88 173901 [15] Nicholson J W, Yan M F, Wisk P, Fleming J, DiMarcello F, Monberg E, Yablon A, Jorgensen C and Veng T 2003 Opt. Lett. 28 643 [16] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25 [17] Town G E, Funaba T, Ryan T and Lyytikainen K 2003 Appl. Phys. B 77 235 [18] Ghosh D, Roy S, Pal M, Pal A, Bhadra S K, McCarthy J, Bookey H and Kar A 2009 Appl. Opt. 48 G12 [19] Kubat I, Agger C S, Moselund P M and Bang O 2013 J. Opt. Soc. Am. B 30 2743 [20] Thapa R, Rhonehouse D, Nguyen D, Wiersma K, Smith C, Zong J and Chavez-Pirson A 2013 Proc. SPIE 8898 [21] Shi H, Feng X, Tan F, and Wang P 2016 Opt. Mater. Express 6 3967 [22] Domachuk P, Wolchover N A, Cronin-Golomb M, Wang A, George A K, Cordeiro C M B, Knight J C and Omenetto F G 2008 Opt. Express 16 7161 [23] Ou H, Dai S, Zhang P, Liu Z, Wang X, Chen F, Xu H, Luo B, Huang Y and Wang R 2016 Opt. Lett. 41 3201 [24] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S and Wang R 2017 Laser Photon. Rev. 11 1700005 [25] Li Q, Liu L, Jia Z, Qin S, Ohishi Y and Qin W P 2017 J. Lightwave Technol. 35 4740 [26] Xu F, Mei C, Yuan J, Li F, Kang Z, Yan B, Wang K, Sang X, Zhou X, Zhong K and Yu C 2018 Opt. Soc. of Am. W3A 30 [27] Nguyen H P T, Tong T H and Luo X 2019 CLEO: Science and Innovations, March 5-10, San Jose, USA, p. 109 [28] Klimczak M, Michalik D and Stpniewski G J 2019 J. Opt. Soc. Am. B 36 A112 [29] Richardson D J, Fini J M and Nelson L E 2013 Nat. Photon. 7 354 [30] Poletti F and Horak P 2009 Opt. Express 17 6134 [31] Salem A B, Trichili A and Cherif R 2016 Appl. Opt. 55 4317 [32] Cherif R, Zghal M, Tartara L and Degiorgio V 2008 Opt. Express 16 2147 [33] Chen Y, Chen Z, Wadsworth W J and Birks T A 2013 Opt. Express 21 17786 [34] Jiang X, Joly N Y, Finger M A, Babic F, Pang M, Sopalla R, Frosz M H, Poulain S, Poulain M, Cardin V, Travers J C and Russell P St J 2016 Opt. Lett. 41 4245 [35] Kubat I and Bang O 2016 Opt. Express 24 2513 [36] Khalifa A B, Salem A B and Cherif R 2018 Frontiers in Optics, September 16-20, 2018, Washington DC, USA, p. 18 [37] Eslami Z, Ryczkowski P and Salmela L 2020 CLEO: Science and Innovations, March 10-15, 2020, Washington DC, USA, p. 3103 [38] Liao M, Duan Z, Gao W, Yan X, Suzuki T and Ohishi Y 2011 Appl. Phys. B 105 681 [39] Cheng T, Sakai Y, Suzuki T and Ohishi Y 2015 Opt. Lett. 40 2088 [40] Li F, Li Q, Yuan J and Wai P A 2014 Opt. Express 22 27339 [41] Cheng Y, Yuan J, Mei C, Li F, Kang Z, Yan B, Zhou X, Wu Q, Wang K, Sang X, Zhong K, Yu C and Farrell G 2020 Opt. Commun. 454 124380 [42] Hult J 2007 J. Lightwave Technol. 25 820 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|