Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 080201    DOI: 10.1088/1674-1056/ac0423
GENERAL   Next  

Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise

Liang-An Huo(霍良安)1, Ya-Fang Dong(董雅芳)1, and Ting-Ting Lin(林婷婷)2,†
1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Electrical and Information Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  With the development of information technology, rumors propagate faster and more widely than in the past. In this paper, a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise is proposed. The global positivity of the solution process is proved, and further the basic reproductive number R0 is obtained. When R0 < 1, the dynamical process of system with Lévy jump tends to the rumor-free equilibrium point of the deterministic system, and the rumor tends to extinction; when R0 > 1, the rumor will keep spreading and the system will oscillate randomly near the rumor equilibrium point of the deterministic system. The results show that the oscillation amplitude is related to the disturbance of the system. In addition, increasing media coverage can effectively reduce the final spread of rumors. Finally, the above results are verified by numerical simulation.
Keywords:  rumor propagation      stochastic process      Lévy jump      media coverage  
Received:  22 March 2021      Revised:  18 May 2021      Accepted manuscript online:  24 May 2021
PACS:  02.30.Jr (Partial differential equations)  
  02.50.Ey (Stochastic processes)  
  02.50.Fz (Stochastic analysis)  
  02.30.-f (Function theory, analysis)  
Fund: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Project for the Natural Science Foundation of Shanghai (Grant No. 21ZR1444100), and the Project for the National Natural Science Foundation of China (Grant Nos. 71774111, 61702331, 71871144).
Corresponding Authors:  Ting-Ting Lin     E-mail:

Cite this article: 

Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷) Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise 2021 Chin. Phys. B 30 080201

[1] Chen G H 2019 Phys. A 522 88
[2] Zhou X Z and Feng H H 2019 J. Comput. Commun. 7 1
[3] Choi D J, Chun S L, Oh H C, Han J Y and Kwon T 2020 Sci. Rep. 1
[4] Alkhodair S A, Ding S H H, Fung B C M and Liu J Q 2020 Inf. Process. Manag. 57 102018
[5] Li Q Z, Zhang Q, Si L and Liu Y C 2019 Rumor Detection on Social Media:Datasets, Methods and Opportunities p. 66
[6] Daley D J and Kendal D G 1965 J. Inst. Maths Applics 1 42
[7] Maki D P and Thompson M 1973 Mathematical models and applications:With emphasis on the social, life, and management sciences (New Jersey:Prentice-Hall) 9780135616703
[8] Zanette D H 2001 Phys. Rev. E 64 050901
[9] Zanette D H 2002 Phys. Rev. E 65 041908
[10] Moreno Y, Nekovee M and Pacheco A F 2004 Phys. Rev. E 69 066130
[11] Li Y F and Cui J G 2009 Commun. Nonlinear Sci. Numer. Simul 14 2353
[12] Sun C J, Yang W Arino J and Khan K 2011 Math. Biosci. 230 87
[13] Tchuenche J Dube N Bhunu C Smith R and Bauch C 2011 BMC Public Health 11 1
[14] Li J R, Jiang H J, Yu Z Y and Hu C 2019 Appl. Math. Comput. 359 374
[15] Huo L A, Wang L and Zhao X M 2019 Phys. A 517 551
[16] Yan J, Santosh V, Itai H and Glen N 2018 Am. J. Infect. Control 46 850
[17] Misra A K, Sharma A and Shukla J B 2011 Math. Comput. Model. Dyn. Syst. 53 1221
[18] Zhou X Z and Feng H H 2019 J. Comput. Commun. 7 1
[19] Lung X Y and Wan Y H 2017 Nanjing Youdian Daxue Xuebao 37 120
[20] Dauhoo M Z, Juggurnath D and Badurally A N 2016 Math. Soc. Sci. 82 85
[21] Jia F G and Lv G Y 2018 Phys. A 490 613
[22] Li D X and Li Y 2017 Chin. Phys. B 26 090203
[23] Ankur J, Joydip D and Vijay G 2019 Phys. A 519 227
[24] Lévy P 1934 Ann. R. Scuola Norm. Super. Pisa 3 337
[25] Khintchine 1937 Bull. Moscow State Univ. 1 1
[26] Brockmann D, Hufnagel L and Geisel T 2006 Nature 439 462
[27] Nekovee M, Moreno Y Bianconi G and Marsili M 2007 Phys. A 374 457
[28] Applebaum D 2009 Lévy process and stochastic calculus (New York:Cambridge Press)
[29] Øksendal B and Sulen A 2005 Applied stochastic control of jump diffusions (Berlin:Springer)
[30] Situ R 2005 Theory of stochastic differential equations with jumps and applications (Berlin:Springer)
[31] Mao X 2008 Stochastic differential equations and applications 2nd Ed. (Chichester:Horwood)
[32] Zheng J, Lin Z Y, Tong C Q and Ye R D 2017 Phys. A 473 461
[1] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[2] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[3] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[4] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[5] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[6] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[7] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[8] Stochastic stability of the derivative unscented Kalman filter
Hu Gao-Ge (胡高歌), Gao She-Sheng (高社生), Zhong Yong-Min (种永民), Gao Bing-Bing (高兵兵). Chin. Phys. B, 2015, 24(7): 070202.
[9] Stability and performance analysis of a jump linear control system subject to digital upsets
Wang Rui (王蕊), Sun Hui (孙辉), Ma Zhen-Yang (马振洋). Chin. Phys. B, 2015, 24(4): 040201.
[10] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[11] Lyapunov function as potential function:A dynamical equivalence
Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平). Chin. Phys. B, 2014, 23(1): 010505.
[12] Dynamics of organizational rumor communication on connecting multi-small-world networks
Xing Qi-Bin(邢琦彬), Zhang Yuan-Biao(张元标), Liang Zhi-Ning(梁志宁), and Zhang Fan(张帆) . Chin. Phys. B, 2011, 20(12): 120204.
[13] Random-phase-induced chaos in power systems
Qin Ying-Hua(覃英华), Luo Xiao-Shu(罗晓曙), and Wei Du-Qu(韦笃取). Chin. Phys. B, 2010, 19(5): 050511.
[14] Stochastic systems with cross-correlated Gaussian white noises
Wang Cheng-Yu(王成玉), Gao Yun(高云), Song Yu-Min(宋玉敏), Zhou Peng(周鹏), and Yang Hai(杨海). Chin. Phys. B, 2010, 19(11): 116401.
[15] Multi-fractal analysis of highway traffic data
Shang Peng-Jian(商朋见) and Shen Jin-Sheng(申金升). Chin. Phys. B, 2007, 16(2): 365-373.
No Suggested Reading articles found!