Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州)1, Chen Cheng(程晨)1, and Hong-Gang Luo(罗洪刚)1,2,†
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 Beijing Computational Science Research Center, Beijing 100084, China
Abstract We propose an improved real-space parallel strategy for the density matrix renormalization group (DMRG) method, where boundaries of separate regions are adaptively distributed during DMRG sweeps. Our scheme greatly improves the parallel efficiency with shorter waiting time between two adjacent tasks, compared with the original real-space parallel DMRG with fixed boundaries. We implement our new strategy based on the message passing interface (MPI), and dynamically control the number of kept states according to the truncation error in each DMRG step. We study the performance of the new parallel strategy by calculating the ground state of a spin-cluster chain and a quantum chemical Hamiltonian of the water molecule. The maximum parallel efficiencies for these two models are 91% and 76% in 4 nodes, which are much higher than the real-space parallel DMRG with fixed boundaries.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674139, 11834005, and 11904145) and the Program for Changjiang Scholars and Innovative Research Team in Universities, China (Grant No. IRT-16R35).
Corresponding Authors:
Hong-Gang Luo
E-mail: luohg@lzu.edu.cn
Cite this article:
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚) Real-space parallel density matrix renormalization group with adaptive boundaries 2021 Chin. Phys. B 30 080202
[1] White S R 1992 Phys. Rev. Lett.69 2863 [2] White S R 1993 Phys. Rev. B48 10345 [3] Verstraete F, Porras D and Cirac J I 2004 Phys. Rev. Lett.93 227205 [4] Schollwöck U 2011 Ann. Phys.326 96 [5] Cheng C, Mao B B, Chen F Z and Luo H G 2015 Europhys. Lett.110 37002 [6] Cheng C, Mao B B, Chen F Z and Luo H G 2015 Eur. Phys. J. B88 152 [7] Bravo B, Cabra D C, Gómez Albarracín F A and Rossini G L 2017 Phys. Rev. B96 054441 [8] Dür W, Hartmann L, Hein M, Lewenstein M and Briegel H J 2005 Phys. Rev. Lett.94 097203 [9] White S R and Scalapino D J 2003 Phys. Rev. Lett.91 136403 [10] Ramos F B and Xavier J C 2014 Phys. Rev. B89 094424 [11] Cheng C, Mondaini R and Rigol M 2018 Phys. Rev. B98 121112 [12] White S R and Chernyshev A L 2007 Phys. Rev. Lett.99 127004 [13] Depenbrock S, McCulloch I P and Schollwöck U 2012 Phys. Rev. Lett.109 067201 [14] Stoudenmire E M and White S R 2012 Ann. Rev. Condens. Matter Phys.3 111 [15] Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S and Chan G K L 2017 Science358 1155 [16] Wang L and Sandvik A W 2018 Phys. Rev. Lett.121 107202 [17] Yu W C, Cheng C and Sacramento P D 2020 Phys. Rev. B101 245131 [18] Xiang T 1996 Phys. Rev. B53 R10445 [19] Motruk J, Zaletel M P, Mong R S K and Pollmann F 2016 Phys. Rev. B93 155139 [20] Ehlers G, White S R and Noack R M 2017 Phys. Rev. B95 125125 [21] White S R and Martin R L 1999 J. Chem. Phys.110 4127 [22] Chan G K L and Sharma S 2011 Ann. Rev. Phys. Chem.62 465 [23] Baiardi A and Reiher M 2020 J. Chem. Phys.152 040903 [24] Luo H G, Qin M P and Xiang T 2010 Phys. Rev. B81 235129 [25] Alvarez G 2010 Comput. Phys. Commun.180 1572 [26] Tzeng Y C 2012 Phys. Rev. B86 024403 [27] White S R 1996 Phys. Rev. Lett.77 3633 [28] Legeza O, Röder J and Hess B A 2003 Phys. Rev. B67 125114 [29] Legeza O and Sólyom J 2003 Phys. Rev. B68 195116 [30] White S R 2005 Phys. Rev. B72 180403 [31] Hubig C, McCulloch I P, Schollwöck U and Wolf F A 2015 Phys. Rev. B91 155115 [32] Núñez Fernández Y and Torroba G 2020 Phys. Rev. B101 085135 [33] Kurashige Y and Yanai T 2009 J. Chem. Phys.130 234114 [34] Chan G K L 2004 J. Chem. Phys.120 3172 [35] Hager G, Jeckelmann E, Fehske H and Wellein G 2004 J. Comput. Phys.194 795 [36] Nemes C, Barcza G, Nagy Z, Legeza O and Szolgay P 2014 Comput. Phys. Commun.185 1570 [37] Chen F Z, Cheng C and Luo H G 2019 Acta Phys. Sin.68 120202 (in Chinese) [38] Chen F Z, Cheng C and Luo H G 2020 Chin. Phys. B29 070202 [39] Stoudenmire E M and White S R 2013 Phys. Rev. B87 155137 [40] Ueda H 2018 J. Phys. Soc. Jpn.87 074005 [41] Urbanek M and Soldán P 2016 Comput. Phys. Commun.199 170 [42] Secular P, Gourianov N, Lubasch M, Dolgov S, Clark S R and Jaksch D 2020 Phys. Rev. B101 235123 [43] Starova G L, Filatov S K, Fundamensky V S and Vergasova L P 1991 Mineralog. Mag.55 613 [44] Fujihala M, Sugimoto T, Tohyama T, Mitsuda S, Mole R A, Yu D H, Yano S, Inagaki Y, Morodomi H, Kawae T, Sagayama H, Kumai R, Murakami Y, Tomiyasu K, Matsuo A and Kindo K 2018 Phys. Rev. Lett.120 077201 [45] Hase M, Rule K C, Hester J R, Fernandez-Baca J A, Masuda T and Matsuo Y 2019 J. Phys. Soc. Jpn.88 094708 [46] Zhou Z, Chen F, Zhong Y, Luo H G and Zhao J 2019 Phys. Rev. B99 205143 [47] Furrer A, Podlesnyak A, Clemente-Juan J M, Pomjakushina E and Güdel H U 2020 Phys. Rev. B101 224417 [48] Chan G K L and Head-Gordon M 2003 J. Chem. Phys.118 8551 [49] Hachmann J, Cardoen W and Chan G K L 2006 J. Chem. Phys.125 144101 [50] Marti K H, Ondík I M, Moritz G and Reiher M 2008 J. Chem. Phys.128 014104 [51] Sharma S, Sivalingam K, Neese F and Chan G K L 2014 Nat. Chem.6 927 [52] Knecht S, Legeza O and Reiher M 2014 J. Chem. Phys.140 041101 [53] Smith D G A, Burns L A, Simmonett A C, Parrish R M, Schieber M C, Galvelis R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James A M, Lehtola S, Misiewicz J P, Scheurer M, Shaw R A, Schriber J B, Xie Y, Glick Z L, Sirianni D A, O'Brien J S, Waldrop J M, Kumar A, Hohenstein E G, Pritchard B P, Brooks B R, Schaefer H F, Sokolov A Y, Patkowski K, DePrince A E, Bozkaya U, King R A, Evangelista F A, Turney J M, Crawford T D and Sherrill C D 2020 J. Chem. Phys.152 184108 [54] Fishman M, White S R and Miles Stoudenmire E 2020 arXiv:2007.14822 [cs.MS] [55] Wouters S, Poelmans W, Ayers P W and Neck D V 2014 Comput. Phys. Commun.185 1501 [56] Chan G K L and Head-Gordon M 2002 J. Chem. Phys.116 4462 [57] Moritz G, Hess B A and Reiher M 2005 J. Chem. Phys.122 024107 [58] Rissler J, Noack R M and White S R 2006 Chem. Phys.323 519 [59] White S R and Feiguin A E 2004 Phys. Rev. Lett.93 076401 [60] Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H and Verstraete F 2011 Phys. Rev. Lett.107 070601
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.