|
|
Real-space parallel density matrix renormalization group with adaptive boundaries |
Fu-Zhou Chen(陈富州)1, Chen Cheng(程晨)1, and Hong-Gang Luo(罗洪刚)1,2,† |
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 Beijing Computational Science Research Center, Beijing 100084, China |
|
|
Abstract We propose an improved real-space parallel strategy for the density matrix renormalization group (DMRG) method, where boundaries of separate regions are adaptively distributed during DMRG sweeps. Our scheme greatly improves the parallel efficiency with shorter waiting time between two adjacent tasks, compared with the original real-space parallel DMRG with fixed boundaries. We implement our new strategy based on the message passing interface (MPI), and dynamically control the number of kept states according to the truncation error in each DMRG step. We study the performance of the new parallel strategy by calculating the ground state of a spin-cluster chain and a quantum chemical Hamiltonian of the water molecule. The maximum parallel efficiencies for these two models are 91% and 76% in 4 nodes, which are much higher than the real-space parallel DMRG with fixed boundaries.
|
Received: 30 November 2020
Revised: 10 February 2021
Accepted manuscript online: 02 March 2021
|
PACS:
|
02.70.-c
|
(Computational techniques; simulations)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
05.10.Cc
|
(Renormalization group methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674139, 11834005, and 11904145) and the Program for Changjiang Scholars and Innovative Research Team in Universities, China (Grant No. IRT-16R35). |
Corresponding Authors:
Hong-Gang Luo
E-mail: luohg@lzu.edu.cn
|
Cite this article:
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚) Real-space parallel density matrix renormalization group with adaptive boundaries 2021 Chin. Phys. B 30 080202
|
[1] White S R 1992 Phys. Rev. Lett. 69 2863 [2] White S R 1993 Phys. Rev. B 48 10345 [3] Verstraete F, Porras D and Cirac J I 2004 Phys. Rev. Lett. 93 227205 [4] Schollwöck U 2011 Ann. Phys. 326 96 [5] Cheng C, Mao B B, Chen F Z and Luo H G 2015 Europhys. Lett. 110 37002 [6] Cheng C, Mao B B, Chen F Z and Luo H G 2015 Eur. Phys. J. B 88 152 [7] Bravo B, Cabra D C, Gómez Albarracín F A and Rossini G L 2017 Phys. Rev. B 96 054441 [8] Dür W, Hartmann L, Hein M, Lewenstein M and Briegel H J 2005 Phys. Rev. Lett. 94 097203 [9] White S R and Scalapino D J 2003 Phys. Rev. Lett. 91 136403 [10] Ramos F B and Xavier J C 2014 Phys. Rev. B 89 094424 [11] Cheng C, Mondaini R and Rigol M 2018 Phys. Rev. B 98 121112 [12] White S R and Chernyshev A L 2007 Phys. Rev. Lett. 99 127004 [13] Depenbrock S, McCulloch I P and Schollwöck U 2012 Phys. Rev. Lett. 109 067201 [14] Stoudenmire E M and White S R 2012 Ann. Rev. Condens. Matter Phys. 3 111 [15] Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S and Chan G K L 2017 Science 358 1155 [16] Wang L and Sandvik A W 2018 Phys. Rev. Lett. 121 107202 [17] Yu W C, Cheng C and Sacramento P D 2020 Phys. Rev. B 101 245131 [18] Xiang T 1996 Phys. Rev. B 53 R10445 [19] Motruk J, Zaletel M P, Mong R S K and Pollmann F 2016 Phys. Rev. B 93 155139 [20] Ehlers G, White S R and Noack R M 2017 Phys. Rev. B 95 125125 [21] White S R and Martin R L 1999 J. Chem. Phys. 110 4127 [22] Chan G K L and Sharma S 2011 Ann. Rev. Phys. Chem. 62 465 [23] Baiardi A and Reiher M 2020 J. Chem. Phys. 152 040903 [24] Luo H G, Qin M P and Xiang T 2010 Phys. Rev. B 81 235129 [25] Alvarez G 2010 Comput. Phys. Commun. 180 1572 [26] Tzeng Y C 2012 Phys. Rev. B 86 024403 [27] White S R 1996 Phys. Rev. Lett. 77 3633 [28] Legeza O, Röder J and Hess B A 2003 Phys. Rev. B 67 125114 [29] Legeza O and Sólyom J 2003 Phys. Rev. B 68 195116 [30] White S R 2005 Phys. Rev. B 72 180403 [31] Hubig C, McCulloch I P, Schollwöck U and Wolf F A 2015 Phys. Rev. B 91 155115 [32] Núñez Fernández Y and Torroba G 2020 Phys. Rev. B 101 085135 [33] Kurashige Y and Yanai T 2009 J. Chem. Phys. 130 234114 [34] Chan G K L 2004 J. Chem. Phys. 120 3172 [35] Hager G, Jeckelmann E, Fehske H and Wellein G 2004 J. Comput. Phys. 194 795 [36] Nemes C, Barcza G, Nagy Z, Legeza O and Szolgay P 2014 Comput. Phys. Commun. 185 1570 [37] Chen F Z, Cheng C and Luo H G 2019 Acta Phys. Sin. 68 120202 (in Chinese) [38] Chen F Z, Cheng C and Luo H G 2020 Chin. Phys. B 29 070202 [39] Stoudenmire E M and White S R 2013 Phys. Rev. B 87 155137 [40] Ueda H 2018 J. Phys. Soc. Jpn. 87 074005 [41] Urbanek M and Soldán P 2016 Comput. Phys. Commun. 199 170 [42] Secular P, Gourianov N, Lubasch M, Dolgov S, Clark S R and Jaksch D 2020 Phys. Rev. B 101 235123 [43] Starova G L, Filatov S K, Fundamensky V S and Vergasova L P 1991 Mineralog. Mag. 55 613 [44] Fujihala M, Sugimoto T, Tohyama T, Mitsuda S, Mole R A, Yu D H, Yano S, Inagaki Y, Morodomi H, Kawae T, Sagayama H, Kumai R, Murakami Y, Tomiyasu K, Matsuo A and Kindo K 2018 Phys. Rev. Lett. 120 077201 [45] Hase M, Rule K C, Hester J R, Fernandez-Baca J A, Masuda T and Matsuo Y 2019 J. Phys. Soc. Jpn. 88 094708 [46] Zhou Z, Chen F, Zhong Y, Luo H G and Zhao J 2019 Phys. Rev. B 99 205143 [47] Furrer A, Podlesnyak A, Clemente-Juan J M, Pomjakushina E and Güdel H U 2020 Phys. Rev. B 101 224417 [48] Chan G K L and Head-Gordon M 2003 J. Chem. Phys. 118 8551 [49] Hachmann J, Cardoen W and Chan G K L 2006 J. Chem. Phys. 125 144101 [50] Marti K H, Ondík I M, Moritz G and Reiher M 2008 J. Chem. Phys. 128 014104 [51] Sharma S, Sivalingam K, Neese F and Chan G K L 2014 Nat. Chem. 6 927 [52] Knecht S, Legeza O and Reiher M 2014 J. Chem. Phys. 140 041101 [53] Smith D G A, Burns L A, Simmonett A C, Parrish R M, Schieber M C, Galvelis R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James A M, Lehtola S, Misiewicz J P, Scheurer M, Shaw R A, Schriber J B, Xie Y, Glick Z L, Sirianni D A, O'Brien J S, Waldrop J M, Kumar A, Hohenstein E G, Pritchard B P, Brooks B R, Schaefer H F, Sokolov A Y, Patkowski K, DePrince A E, Bozkaya U, King R A, Evangelista F A, Turney J M, Crawford T D and Sherrill C D 2020 J. Chem. Phys. 152 184108 [54] Fishman M, White S R and Miles Stoudenmire E 2020 arXiv:2007.14822 [cs.MS] [55] Wouters S, Poelmans W, Ayers P W and Neck D V 2014 Comput. Phys. Commun. 185 1501 [56] Chan G K L and Head-Gordon M 2002 J. Chem. Phys. 116 4462 [57] Moritz G, Hess B A and Reiher M 2005 J. Chem. Phys. 122 024107 [58] Rissler J, Noack R M and White S R 2006 Chem. Phys. 323 519 [59] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401 [60] Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H and Verstraete F 2011 Phys. Rev. Lett. 107 070601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|