Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044201    DOI: 10.1088/1674-1056/21/4/044201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Cutting of nonmetallic materials using Nd:YAG laser beam

Bashir Ahmed Tahira), Rashid Ahmedb), M. G. B. Ashiqa), Afaq Ahmedc), and M. A. Saeeda)
a. Institute of Advanced Photonic Sciences, Faculty of Science, Universiti Teknologi Malaysia 81310 Skudai, Johor, Malaysia;
b. Physics Department, Faculty of Science, Universiti Teknologi Malaysia 81310 Skudai, Johor, Malaysia;
c. Centre for Solid State Physics, University of the Punjab, Lahore, Pakistan
Abstract  This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.
Keywords:  laser power      cutting speed      depth of cut      nonmetallic material      Nd:YAG laser  
Received:  17 August 2011      Revised:  17 August 2011      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.62.Cf (Industrial applications)  
Fund: Project supported by the Science Foundation of the Ministry of Science and Technology Malaysia and the Islamic Development Bank Jeddah.
Corresponding Authors:  M. A. Saeed,saeed@utm.my     E-mail:  saeed@utm.my

Cite this article: 

Bashir Ahmed Tahir, Rashid Ahmed, M. G. B. Ashiq, Afaq Ahmed, and M. A. Saeed Cutting of nonmetallic materials using Nd:YAG laser beam 2012 Chin. Phys. B 21 044201

[1] John F R 1999 Industrial Application of Lasers (New York: Academic Press) pp. 404-415
[2] Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G and Stournaras A 2009 CIRP J. Manufac. Sci. Tech. 2 61
[3] Davima J P, Barricasa N, Conceicao M and Oliveirab C 2008 J. Mater. Process. Tech. 198 99
[4] Choudhury I A and Shirley S 2010 Optics & Laser Technology 42 503
[5] Pfeifer R, Herzog D, Hustedt M and Barcikowski S 2010 J. Mater. Process. Tech. 210 1918
[6] Zhou B H and Mahdavian S M 2004 J. Mater. Process. Tech. 128 188
[7] Yilba B S 1996 J. Mater. Process. Tech. 58 323
[8] Coherent Inc. Saunders R 1980 Laser-operation, Equipment, Application and Design ed. Bellis J (New York: McGraw-Hill) pp.137-196
[9] Peters C C 1975 USDA Forest Service Paper FPL 250 346
[10] Nuss R 1988 Proceedings of the 5th International Conference on Laser in Manufacturing, September 13-14, 1988 Stuttgart, West Germany, p. 340
[11] Mayfield J H 1978 Am. Mach. 11 18
[12] Todd J A 1997 J. Manuf. Sci. Eng. 119 155
[13] Vicannk M G, Simon H M and Recker I 1987 J. Phys. 20
[14] Cai L and Sheng P 1996 J. Manuf. Sci. Eng. 118 225
[15] Pietro D P and Yao Y L 1995 Int. J. Mach. Tools Manuf. 35 673
[16] Zhou B H 1999 Application of Laser Marking and Cutting of Materials in Manufacturing Industry Master Thesis (Melbourne Australia: RMIT University)
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[3] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[4] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[5] Experimental study of electro-optical Q-switched pulsed Nd:YAG laser
A Maleki, M Kavosh Tehrani, H Saghafifar, M H Moghtader Dindarlu. Chin. Phys. B, 2016, 25(3): 034206.
[6] Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
Hui Lan(兰慧), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗). Chin. Phys. B, 2016, 25(3): 035202.
[7] Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance
Seyed Ebrahim Pourmand, Ghasem Rezaei. Chin. Phys. B, 2015, 24(12): 124206.
[8] 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO
Wang Peng-Yuan (王鹏远), Xie Shi-Yong (谢仕永), Bo Yong (薄勇), Wang Bao-Shan (王保山), Zuo Jun-Wei (左军卫), Wang Zhi-Chao (王志超), Shen Yu (申玉), Zhang Feng-Feng (张丰丰), Wei Kai (魏凯), Jin Kai (晋凯), Xu Yi-Ting (徐一汀), Xu Jia-Lin (许家林), Peng Qin-Jun (彭钦军), Zhang Jing-Yuan (张景园), Lei Wen-Qiang (雷文强), Cui Da-Fu (崔大复), Zhang Yu-Dong (张雨东), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2014, 23(9): 094208.
[9] Effects of temperature and input energy on quasi-three-level emission cross section of Nd3+:YAG pumped by flashlamp
Seyed Ebrahim Pourmand, Noriah Bidin, Hazri Bakhtiar. Chin. Phys. B, 2012, 21(9): 094214.
[10] Fold optics path: an improvement for an atomic fountain
Wei Rong(魏荣), Zhou Zi-Chao(周子超), Shi Chun-Yan(史春艳), Zhao Jian-Bo(赵剑波), Li Tang(李唐), and Wang Yu-Zhu(王育竹). Chin. Phys. B, 2011, 20(8): 089501.
[11] Surface second-harmonic generation based on periodically poled LiNbO3 nonlinear optical crystal
H. Nili-Ahmadabadi and A.R. Khorsandi. Chin. Phys. B, 2011, 20(5): 054205.
[12] Polarization switching in a quasi-isotropic microchip Nd:YAG laser induced by optical feedback
Ren Cheng(任成), Tan Yi-Dong(谈宜东), and Zhang Shu-Lian(张书练). Chin. Phys. B, 2010, 19(2): 024206.
[13] Simultaneous all-solid-state multi-wavelength lasers --- a promising pump source for generating highly coherent terahertz waves
Liu Huan(刘欢), Xu De-Gang(徐德刚), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2009, 18(3): 1077-1084.
[14] 1.15kW continuous-wave generation by diode-side-pumped two-rod Nd:YAG laser
Bo Yong (薄勇), Geng Ai-Cong (耿爱丛), Bi Yong (毕勇), Sun Zhi-Pei (孙志培), Yang Xiao-Dong (杨晓冬), Peng Qin-Jun (彭钦军), Li Hui-Qing (李惠青), Li Rui-Ning (李瑞宁), Cui Da-Fu (崔大复), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2005, 14(4): 771-773.
[15] Oscillation conditions of cw simultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2-4I9/2 and 4F3/2-4I11/2
Li Ping-Xue (李平雪), Li De-Hua (李德华), Li Chun-Yong (李春勇), Zhang Zhi-Guo (张治国). Chin. Phys. B, 2004, 13(10): 1689-1693.
No Suggested Reading articles found!