Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078202    DOI: 10.1088/1674-1056/abf347
RAPID COMMUNICATION Prev   Next  

Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction

Tongtong Shang(尚彤彤)1,2, Dongdong Xiao(肖东东)1,3,†, Qinghua Zhang(张庆华)1,4,‡, Xuefeng Wang(王雪锋)1,2, Dong Su(苏东)1,2, and Lin Gu(谷林)1,2,3,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Yangtze River Delta Physics Research Center Co. Ltd., Liyang 213300, China
Abstract  Electron density plays an important role in determining the properties of functional materials. Revealing the electron density distribution experimentally in real space can help to tune the properties of materials. Spinel LiMn2O4 is one of the most promising cathode candidates because of its high voltage, low cost, and non-toxicity, but suffers severe capacity fading during electrochemical cycling due to the Mn dissolution. Real-space measurement of electron distribution of LiMn2O4 experimentally can provide direct evaluation on the strength of Mn-O bond and give an explanation of the structure stability. Here, through high energy synchrotron powder x-ray diffraction (SPXRD), accurate electron density distribution in spinel LiMn2O4 has been investigated based on the multipole model. The electron accumulation between Mn and O atoms in deformation density map indicates the shared interaction of Mn-O bond. The quantitative topological analysis at bond critical points shows that the Mn-O bond is relatively weak covalent interaction due to the oxygen loss. These findings suggest that oxygen stoichiometry is the key factor for preventing the Mn dissolution and capacity fading.
Keywords:  lithium-ion batteries      LiMn2O4      electron density distribution  
Received:  03 March 2021      Revised:  22 March 2021      Accepted manuscript online:  30 March 2021
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by Beijing Natural Science Foundation, China (Grant No. Z190010), the National Key Research and Development Program of China (Grant No. 2019YFA0308500), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), Key Research Projects of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC035), and the National Natural Science Foundation of China (Grant Nos. 51421002, 51672307, 51991344, 52025025, and 52072400).
Corresponding Authors:  Dongdong Xiao, Qinghua Zhang, Lin Gu     E-mail:  dongdongxiao@iphy.ac.cn;zqh@iphy.ac.cn;l.gu@iphy.ac.cn

Cite this article: 

Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林) Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction 2021 Chin. Phys. B 30 078202

[1] Gu L, Xiao D D, Hu Y S, Li H and Ikuhara Y 2015 Adv. Mater. 27 2134
[2] Choi J W and Aurbach D 2016 Nat. Rev. Mater. 1 16013
[3] Wen Y, Xiao D, Liu X and Gu L 2017 NPG Asia Mater. 9 e360
[4] Ellis B L, Lee K T and Nazar L F 2010 Chem. Mat. 22 691
[5] Park O K, Cho Y, Lee S, Yoo H C, Song H K and Cho J 2011 Energy Environ. Sci. 4 1621
[6] Benedek R and Thackeray M M 2006 Electrochem. Solid-State Lett. 9 A265
[7] Deng B, Nakamura H and Yoshio M 2008 J. Power Sources 180 864
[8] Li H, Luo Y, Xie J, Zhang Q and Yan L 2015 J. Alloy. Compd. 639 346
[9] Manthiram A and Choi W 2007 Electrochem. Solid-State Lett. 10 A228
[10] Liu Q, Wang S, Tan H, Yang Z and Zeng J 2013 Energies 6 1718
[11] Kim D K, Muralidharan P, Lee H W, Ruffo R, Yang Y, Chan C K, Peng H, Huggins R A and Cui Y 2008 Nano Lett. 8 3948
[12] Stevens E D and Hope H 1977 Acta Cryst. 33 723
[13] Streltsov V A, Belokoneva E L, Tsirelson V G and Hansen N K 1993 Acta Cryst. 49 147
[14] Tolborg K and Iversen B B 2019 Chem. Eur. J. 25 15010
[15] Toole N J O' and Streltsov V A 2001 Phys. Rev. B 57 128
[16] Mondal S, Smaalen S van, Parakhonskiy G, Prathapa S J, Noohinejad L, Bykova E, Dubrovinskaia N, Chernyshov D and Dubrovinsky L 2013 Phys. Rev. B 88 024118
[17] Scherer W, Hauf C, Presnitz M, Scheidt E W, Eickerling G, Eyert V, Hoffmann R D, Rodewald U C, Hammerschmidt A, Vogt C and Pöttgen R 2010 Angew. Chem. Int. Edit. 49 1578
[18] Bader R F W and Essén H 1984 J. Chem. Phys. 80 1943
[19] Bader R F W 1991 Chem. Rev. 91 893
[20] Koritsanszky T S and Coppens P 2001 Chem. Rev. 101 1583
[21] Kasai H, Tolborg K, Sist M, Zhang J, Hathwar V R, Filso M O, Cenedese S, Sugimoto K, Overgaard J, Nishibori E and Iversen B B 2018 Nat. Mater. 17 249
[22] Schmokel M S, Bjerg L, Larsen F K, Overgaard J, Cenedese S, Christensen M, Madsen G K H, Gatti C, Nishibori E, Sugimoto K, Takata M and Iversen B B 2013 Acta Cryst. 69 570
[23] Wahlberg N, Bindzus N, Bjerg L, Becker J, Christensen S, Dippel A C, Jorgensen M R V and Iversen B B 2015 J. Phys. Chem. C 119 6164
[24] Nishibori E, Sunaoshi E, Yoshida A, Aoyagi S, Kato K, Takata M and Sakata M 2007 Acta Cryst. 63 43
[25] indzus N, Straaso T, Wahlberg N, Becker J, Bjerg L, Lock N, Dippel A C and Iversen B B 2014 Acta Cryst. A70 39
[26] Svane B, Tolborg K, Jorgensen L R, Roelsgaard M, Jorgensen M R V and Iversen B B 2019 Acta Cryst. A75 600
[27] Hunter J C 1981 Journal of Solid State Chemistry 39 142
[28] Václav P, Michal D and Lukáš P 2014 Z. Kristallogr. 229 345
[29] Gatti C 2005 Z. Kristallogr. 220 399
[30] Kim Y, Lim J and Kang S 2013 Int. J. Quantum Chem. 113 148
[1] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[2] Pressure dependence of the thermal stability in LiMn2O4
Yan Zeng(曾彦), Hao Liang(梁浩), Shixue Guan(管诗雪), Junpu Wang(王俊普), Wenjia Liang(梁文嘉), Mengyang Huang(黄梦阳), and Fang Peng(彭放). Chin. Phys. B, 2022, 31(1): 016104.
[3] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[4] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[5] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[6] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[7] Improved electrochemical performances of high voltage LiCoO2 with tungsten doping
Jie-Nan Zhang(张杰男), Qing-Hao Li(李庆浩), Quan Li(李泉), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088202.
[8] Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries
Yu-Xin Tong(仝毓昕), Qing-Hua Zhang(张庆华), Lin Gu(谷林). Chin. Phys. B, 2018, 27(6): 066107.
[9] Modeling of LiFePO4 battery open circuit voltage hysteresis based on recursive discrete Preisach model
Wei-Yi Sun(孙维毅), Hai-Tao Min(闵海涛), Dong-Ni Guo(郭冬妮), Yuan-Bin Yu(于远彬). Chin. Phys. B, 2017, 26(12): 127503.
[10] Mechanics of high-capacity electrodes in lithium-ion batteries
Ting Zhu. Chin. Phys. B, 2016, 25(1): 014601.
[11] FT-Raman spectroscopy study of solvent-in-salt electrolytes
Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 016101.
[12] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[13] Methyl orbital signatures in 2-amino-1-propanol
Wang Ke-Dong(王克栋), Duan Kun-Jie(段坤杰), and Liu Yu-Fang (刘玉芳) . Chin. Phys. B, 2012, 21(7): 073103.
[14] High power nano-LiMn2O4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries
Chen Ying-Chao(陈颖超),Xie Kai(谢凯),Pan Yi(盘毅), Zheng Chun-Man(郑春满),and Wang Hua-Lin(王华林) . Chin. Phys. B, 2011, 20(2): 028201.
No Suggested Reading articles found!