Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 055203    DOI: 10.1088/1674-1056/abd161
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Energy behavior of Boris algorithm

Abdullah Zafar1,? and Majid Khan2
1 Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China;
2 Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
Abstract  Boris numerical scheme due to its long-time stability, accuracy and conservative properties has been widely applied in many studies of magnetized plasmas. Such algorithms conserve the phase space volume and hence provide accurate charge particle orbits. However, this algorithm does not conserve the energy in some special electromagnetic configurations, particularly for long simulation times. Here, we empirically analyze the energy behavior of Boris algorithm by applying it to a 2D autonomous Hamiltonian. The energy behavior of the Boris method is found to be strongly related to the integrability of our Hamiltonian system. We find that if the invariant tori is preserved under Boris discretization, the energy error can be bounded for an exponentially long time, otherwise the said error will show a linear growth. On the contrary, for a non-integrable Hamiltonian system, a random walk pattern has been observed in the energy error.
Keywords:  Boris algorithm      invariant tori      chaotic system      Hénon-Heiles potential  
Received:  17 August 2020      Revised:  27 November 2020      Accepted manuscript online:  08 December 2020
PACS:  52.25.Xz (Magnetized plasmas)  
  52.20.Dq (Particle orbits)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Corresponding Authors:  Abdullah Zafar     E-mail:  zafar@mail.ustc.edu.cn

Cite this article: 

Abdullah Zafar and Majid Khan Energy behavior of Boris algorithm 2021 Chin. Phys. B 30 055203

[1] Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation Plasmas (U.S. Government Printing Office, Washington D.C.) pp. 3-67
[2] Hairer E and Lubich C 2018 BIT Numer. Math. 58 969
[3] Qin H, Zhang S, Xiao J, Liu J, Sun Y and Tang W M 2013 Phys. Plasmas 20 084503
[4] Stoltz P H, Cary J R, Penn G and Wurtele J 2002 Phys. Rev. ST Accel. Beams 5 094001
[5] Qiang J 2017 Nucl. Instrum. Methods Phys. Res. 867 15
[6] Webb S D 2014 J. Comput. Phys. 270 570
[7] Khan M, Zafar A and Kamran M 2015 J. Fusion Energy 34 298
[8] Khan M, Schoepf K, Goloborod'Ko V and Sheng Z M 2017 J. Fusion Energy 36 40
[9] Ellison C L, Burby J W and Qin H 2015 J. Comput. Phys. 301 489
[10] Khan M, Khalid M, Kamran M and Khan R 2020 J. Fusion Energy 39 77
[11] Zhang S, Jia Y and Sun Q 2015 J. Comput. Phys. 282 43
[12] Hairer E, McLachlan R I and Skeel R D 2009 ESAIM: M2AN 43 631
[13] He Y, Zhou Z, Sun Y, Liu J and Qin H 2017 Phys. Lett. A 381 568
[14] Gómez A and Meiss J D 2002 Chaos 12 289
[15] Cheng C Q and Sun Y S 1989 Celest. Mech. Dyn. Astron 47 275
[16] Xia Z 1992 Ergod. Theory Dyn. Syst. 12 621
[17] Goldstein H, Poole C and Safko J 2002 Classical Mechanics 3rd edn (San Francisco: Addison-Wesley)
[18] Henon M and Heiles C 1964 Astron. J. 69 73
[19] Teschl G 2012 Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics (American Mathematical Society) Vol. 140 p. 295
[20] Zotos E E 2015 Nonlinear Dyn. 79 1665
[21] Hunter C 2000 Spectral Analysis of Orbits via Discrete Fourier Transforms in Observational Manifestation of Chaos in Astro-physical Objects, invited talks for a workshop held in Moscow, Sternberg Astronomical Institute, 28-29 August 2000, ed Fridman A M, Marov M Y and Miller R H (Dordrecht: Springer, 2002) pp. 83-99
[22] Voyatzis G and Ichtiaroglou S 1992 J. Phys. A: Math. Gen. 25 5931
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[9] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[10] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[13] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[14] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!