Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036101    DOI: 10.1088/1674-1056/abc67e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector

Rongrong Guo(郭榕榕)†, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军)
1 Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
Abstract  \baselineskip=12.5pt plus.2pt minus.2pt The space charge accumulation in CdZnTe crystals seriously affects the performance of high-flux pulse detectors. The influence of sub-bandgap illumination on the space charge distribution and device performance in CdZnTe crystals were studied theoretically by Silvaco TCAD software simulation. The sub-bandgap illumination with a wavelength of 890 nm and intensity of 8× 10 -8 W/cm2 were used in the simulation to explore the space charge distribution and internal electric field distribution in CdZnTe crystals. The simulation results show that the deep level occupation faction is manipulated by the sub-bandgap illumination, thus space charge concentration can be reduced under the bias voltage of 500 V. A flat electric field distribution is obtained, which significantly improves the charge collection efficiency of the CdZnTe detector. Meanwhile, premised on the high resistivity of CdZnTe crystal, the space charge concentration in the crystal can be further reduced with the wavelength of 850 nm and intensity of 1× 10 -7 W/cm2 illumination. The electric field distribution is flatter and the carrier collection efficiency of the device can be improved more effectively.
Keywords:  CdZnTe detector      sub-bandgap illumination      space charge      charge collection efficiency  
Received:  06 August 2020      Revised:  26 October 2020      Accepted manuscript online:  31 October 2020
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
  78.56.Cd (Photocarrier radiometry)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51702271 and 61904155) and the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05239).
Corresponding Authors:  Corresponding author. E-mail: 2016000050@xmut.edu.cn   

Cite this article: 

Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军) Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector 2021 Chin. Phys. B 30 036101

1 Czyz S A, Farsoni A T and Gadey H R 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 945 162614
2 Guo Q, Beilicke M, Garson A, Kislat F, Fleming D and Krawczynski H 2012 Astropart. Phys. 41 63
3 Johns P M and Nino J C 2019 J. Appl. Phys. 126 040902
4 Bolotnikov A E, Babalola S, Camarda G S, et al. 2011 IEEE Trans. Nucl. Sci. 58 1972
5 Cola A and Farella I 2013 Sensors (Basel) 13 9414
6 Musiienko A, Grill R, Pek\'arek J, Belas E, Praus P, Pipek J, D\vedi\vc V and Elhadidy H 2017 Appl. Phys. Lett. 111 082103
7 Mahmood S A 2019 J. Appl. Phys. 125 214505
8 Thomas B, Veale M C, Wilson M D, Seller P, Schneider A and Iniewski K 2017 J. Inst. 12 C12045
9 Alekseeva L, Dorogov P, Ivanov V, Loutchanski A, Grigorjeva L and Millers D 2012 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23-29, October, 2011, p. 4562
10 Washington A L, Teague L C, Duff M C, Burger A, Groza M and Buliga V 2011 J. Appl. Phys. 110 073708
11 Ellakany A A, Abouelatta M, Shaker A, Sayah G T and El-Banna M 2017 J. Eng. 2017 574
12 Maneuski D, Gostilo V and Owens A 2019 J. Phys. D: Appl. Phys. 53 015114
13 Das A,Duttagupta S P 2015 Radiat. Prot. Dosim. 167 443
14 Johannesson D, Nawaz M and Nee H P 2019 Mater. Sci. Forum. 963 670
15 Tang L G2014 Semiconductor process and device simulation software Silvaco TCAD practical tutorial (Beijing: Tsinghua University Press) p. 99 (in Chinese)
16 Prokesch M and Szeles C 2007 Phys. Rev. B 75 245204
17 Gul R, Roy U N and James R B 2017 J. Appl. Phys. 121 115701
18 Cola A, Farella I and Anni M 2012 IEEE Trans. Nucl. Sci. 59 4604
19 Montmorillon L A D, Delaye P, Launay J C and Roosen G 1995 Opt. Mater. 4 233
20 Wang N, Jie W Q, Xu L, Zha G Q and Wang T 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, 27 October-2 November, 2013, Seoul, South Korea, pp. 1-5
21 Zha G Q, Wang T, Xu Y D and Jie W Q 2013 Physics 42 862 (in Chinese)
22 http://www.silvaco.com/
23 Marple D T F 1964 J. Appl. Phys. 35 539
24 Cheng Z, Delahoy A E, Su Z and Chin K K 2014 Thin Solid Films 558 391
25 Hsieh Y K and Card H C 1989 J. Appl. Phys. 65 2409
26 Matthew C Veale 2009 Charge Transport and Low Temperature Phenomena in Single Crystal CdZnTe (Guildford: University of Surrey)
[1] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[2] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[3] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[4] Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias
Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚). Chin. Phys. B, 2019, 28(3): 038501.
[5] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[6] Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale
Li-Jun Du(杜丽军), Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Yao Huang(黄垚), Xin Tong(童昕), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(4): 043701.
[7] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[8] Research on field emission mechanism of nano-structured carbon film
Wang Yan-Yan (王艳燕), Li Ying-Ai (李英爱), Xu Ji-Song (许基松), Gu Guang-Rui (顾广瑞 ). Chin. Phys. B, 2012, 21(8): 087902.
[9] Measurement of the secular motion frequency and the space charge density in the linear ion trap
Zhou Fei(周飞), Xie Yi(谢艺), Xu You-Yang(徐酉阳), Huang Xue-Ren(黄学人), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(11): 113206.
[10] Observation of a diverse deviation from macropore-formation theory in silicon electrochemistry
Bao Xiao-Qing(包晓清), Ge Dao-Han(葛道晗), and Jiao Ji-Wei(焦继伟). Chin. Phys. B, 2008, 17(8): 3130-3137.
[11] Physical design and cooling test of C-band standing wave accelerating tube
Bai Wei (柏伟), Xu Zhou (许州), Jin Xiao (金晓), Li Ming (黎明). Chin. Phys. B, 2006, 15(2): 319-323.
[12] Light-induced acoustic effect in LiNbO3:Fe:Ce crystals
Huang Wei (黄伟), Wu Zhong-Kang (吴仲康), Wang Chang-Qing (王长青). Chin. Phys. B, 2005, 14(11): 2231-2234.
No Suggested Reading articles found!