CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide |
Tao Huang(黄韬)1, Yuan Si(思源)1, Hong-Yu Wu(吴宏宇)1, Li-Xin Xia(夏立新)2, Yu Lan(蓝郁)3, Wei-Qing Huang(黄维清)1,†, Wang-Yu Hu(胡望宇)4, and Gui-Fang Huang(黄桂芳)1,‡ |
1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Department of Physics, Kashgar University, Kashgar 844006, China; 3 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China; 4 School of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract Hydrogen, regarded as a promising energy carrier to alleviate the current energy crisis, can be generated from hydrogen evolution reaction (HER), whereas its efficiency is impeded by the activity of catalysts. Herein, effective strategies, such as strain and interfacial engineering, are imposed to tune the catalysis performance of novel two-dimensional (2D) phosphorus carbide (PC) layers using first-principle calculations. The findings show that P site in pristine monolayer PC (ML-PC) exhibits higher HER performance than C site. Intriguingly, constructing bilayer PC sheet (BL-PC) can change the coordinate configuration of P atom to form 3-coordination-P atom (3-co-P) and 4-coordination-P atom (4-co-P), and the original activity of 3-co-P site is higher than the 4-co-P site. When an external compressive strain is applied, the activity of the 4-co-P site is enhanced whereas the external strain can barely affect that of 3-co-P site. Interestingly, the graphene substrate enhances the overall activity of the BL-PC because the graphene substrate optimizes the ∆ G H* value of 4-co-P site, although it can barely affect the HER activity of 3-co-P site and ML-PC. The desirable properties render 2D PC-based material promising candidates for HER catalysts and shed light on the wide utilization in electrocatalysis.
|
Received: 05 July 2020
Revised: 26 August 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
82.45.Yz
|
(Nanostructured materials in electrochemistry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772085 and U1830138). |
Corresponding Authors:
†Corresponding author. E-mail: wqhuang@hnu.edu.cn ‡Corresponding author. E-mail: gfhuang@hnu.edu.cn
|
Cite this article:
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳) Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide 2021 Chin. Phys. B 30 027101
|
1 Dresselhaus M S and Thomas I L 2001 Nature 414 332 2 Dunn S 2002 Int. J. Hydrog. Energy 27 235 3 Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Norskov J K 2005 J. Electrochem. Soc. 152 J23 4 Schlapbach L and Zuttel A 2001 Nature 414 353 5 Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R and Markovic N M 2013 Nat. Chem. 5 300 6 Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2015 Chem. Soc. Rev. 44 2060 7 Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B and Norskov J K 2006 Nat. Mater. 5 909 8 Wang P, Jiang K, Wang G, Yao J and Huang X 2016 Angew. Chem. Int. Edit. 55 12859 9 Zheng Y, Jiao Y, Jaroniec M and Qiao S Z 2015 Angew. Chem. Int. Edit. 54 52 10 Zheng S, Yu T, Lin J, Lou H, Xu H and Yang G 2019 J. Mater. Chem. A 7 25665 11 Lin X D and Zhou Y G 2019 J. Phys.: Condens. Matter 31 355302 12 Zhang B, Zhou J, Guo Z, Peng Q and Sun Z 2020 Appl. Surf. Sci. 500 144248 13 Yu Q, Luo Y, Qiu S, Li Q, Cai Z, Zhang Z, Liu J, Sun C and Liu B 2019 ACS Nano 13 11874 14 Lei B, Zhang Y Y and Du S X 2020 Chin. Phys. B 29 058104 15 Zhang J, Jiang W J, Niu S, Zhang H T, Liu J, Li H Y, Huang G F, Jiang L, Huang W Q, Hu J S and Hu W P 2020 Adv. Mater. 32 9 16 Chen Y, Yang K, Jiang B, Li J, Zeng M and Fu L 2017 J. Mater. Chem. A 5 8187 17 Karmodak N and Andreussi O 2020 Acs Energy Lett. 5 885 18 Gao G, O'Mullane A P and Du A 2016 ACS Catal. 7 494 19 Chaudhari N K, Jin H, Kim B, Baek D S, Joo S H and Lee K 2017 J. Mater. Chem. A 5 24564 20 Zhang C, Yu G, Ku R, Huang X and Chen W 2019 Appl. Surf. Sci. 481 272 21 Wu H H, Huang H, Zhong J, Yu S, Zhang Q and Zeng X C 2019 Nanoscale 11 12210 22 Zhang R, Yu G, Gao Y, Huang X and Chen W 2020 Inorg. Chem. Front. 7 647 23 Zhao N, Wang L, Zhang Z and Li Y 2019 ACS Appl. Mater. Inter. 11 42014 24 Sharma M D, Mahala C and Basu M 2020 Inorg. Chem. 59 4377 25 Zhao X, He D W, Wang Y S and Fu C 2018 Chin. Phys. B 27 068103 26 Silva J L, Brena B and Araujo C M 2020 J. Phys. Chem. C 124 8726 27 Riyajuddin S, Aziz S K T, Kumar S, Nessim G D and Ghosh K 2020 Chemcatchem 12 1394 28 Li Y Y, Si Y, Han E X, Huang W Q, Hu W Y, Pan A L, Fan X X and Huang G F 2019 J. Phys. D: Appl. Phys. 52 105502 29 Li Y Y, Si Y, Zhou B X, Huang W Q, Hu W, Pan A, Fan X and Huang G F 2019 Nanoscale 11 16393 30 Yu S, Rao Y C, Wu H H and Duan X M 2018 Phys. Chem. Chem. Phys. 20 27970 31 Zhang X, Chen A, Zhang Z, Jiao M and Zhou Z 2018 J. Mater. Chem. A 6 11446 32 Zhang X L, Yang Z X, Yang X, Wang Y L and Lu Z S 2018 Int. J. Hydrog. Energy 43 20573 33 Lu J, Zhang X, Liu D N, Yang N, Huang H, Jin S W, Wang J H, Chu P K and Yu X F 2019 ACS Appl. Mater. Inter. 11 37787 34 Gan Y, Xue X X, Jiang X X, Xu Z, Chen K, Yu J F and Feng Y 2019 J. Phys.: Condens. Matter 32 025202 35 Rajbanshi B and Sarkar P 2017 J. Phys. Chem. Lett. 8 747 36 Blochl 1994 Phys. Rev. B 50 17953 37 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 38 Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15 39 Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 40 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 41 Huang T, Chen Q, Cheng M Q, Huang W Q, Hu W Y and Huang G F 2019 J. Phys. D: Appl. Phys. 52 7 42 Chianelli R R, Berhault G, Raybaud P, Kasztelan S, Hafner J and Toulhoat H 2002 Appl. Catal. a-Gen. 227 83 43 Medford A J, Vojvodic A, Hummelshoj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A and Norskov J K 2015 J. Catal. 328 36 44 Gao G, Sun G and Du A 2016 J. Phys. Chem. C 120 16761 45 Huang T, Lian J C, Yang K, Si Y, Wu H Y, Huang W Q, Hu W Y and Huang G F 2020 Physica E 118 113962 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|