Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027101    DOI: 10.1088/1674-1056/abbbe7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide

Tao Huang(黄韬)1, Yuan Si(思源)1, Hong-Yu Wu(吴宏宇)1, Li-Xin Xia(夏立新)2, Yu Lan(蓝郁)3, Wei-Qing Huang(黄维清)1,†, Wang-Yu Hu(胡望宇)4, and Gui-Fang Huang(黄桂芳)1,
1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Department of Physics, Kashgar University, Kashgar 844006, China; 3 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China; 4 School of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  Hydrogen, regarded as a promising energy carrier to alleviate the current energy crisis, can be generated from hydrogen evolution reaction (HER), whereas its efficiency is impeded by the activity of catalysts. Herein, effective strategies, such as strain and interfacial engineering, are imposed to tune the catalysis performance of novel two-dimensional (2D) phosphorus carbide (PC) layers using first-principle calculations. The findings show that P site in pristine monolayer PC (ML-PC) exhibits higher HER performance than C site. Intriguingly, constructing bilayer PC sheet (BL-PC) can change the coordinate configuration of P atom to form 3-coordination-P atom (3-co-P) and 4-coordination-P atom (4-co-P), and the original activity of 3-co-P site is higher than the 4-co-P site. When an external compressive strain is applied, the activity of the 4-co-P site is enhanced whereas the external strain can barely affect that of 3-co-P site. Interestingly, the graphene substrate enhances the overall activity of the BL-PC because the graphene substrate optimizes the ∆ G H* value of 4-co-P site, although it can barely affect the HER activity of 3-co-P site and ML-PC. The desirable properties render 2D PC-based material promising candidates for HER catalysts and shed light on the wide utilization in electrocatalysis.
Keywords:  phosphorus carbide      hydrogen evolution reaction (HER)      coordination configuration      electrocatalysis      first principle calculations  
Received:  05 July 2020      Revised:  26 August 2020      Accepted manuscript online:  28 September 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.At (Surface states, band structure, electron density of states)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772085 and U1830138).
Corresponding Authors:  Corresponding author. E-mail: wqhuang@hnu.edu.cn Corresponding author. E-mail: gfhuang@hnu.edu.cn   

Cite this article: 

Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳) Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide 2021 Chin. Phys. B 30 027101

1 Dresselhaus M S and Thomas I L 2001 Nature 414 332
2 Dunn S 2002 Int. J. Hydrog. Energy 27 235
3 Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Norskov J K 2005 J. Electrochem. Soc. 152 J23
4 Schlapbach L and Zuttel A 2001 Nature 414 353
5 Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R and Markovic N M 2013 Nat. Chem. 5 300
6 Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2015 Chem. Soc. Rev. 44 2060
7 Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B and Norskov J K 2006 Nat. Mater. 5 909
8 Wang P, Jiang K, Wang G, Yao J and Huang X 2016 Angew. Chem. Int. Edit. 55 12859
9 Zheng Y, Jiao Y, Jaroniec M and Qiao S Z 2015 Angew. Chem. Int. Edit. 54 52
10 Zheng S, Yu T, Lin J, Lou H, Xu H and Yang G 2019 J. Mater. Chem. A 7 25665
11 Lin X D and Zhou Y G 2019 J. Phys.: Condens. Matter 31 355302
12 Zhang B, Zhou J, Guo Z, Peng Q and Sun Z 2020 Appl. Surf. Sci. 500 144248
13 Yu Q, Luo Y, Qiu S, Li Q, Cai Z, Zhang Z, Liu J, Sun C and Liu B 2019 ACS Nano 13 11874
14 Lei B, Zhang Y Y and Du S X 2020 Chin. Phys. B 29 058104
15 Zhang J, Jiang W J, Niu S, Zhang H T, Liu J, Li H Y, Huang G F, Jiang L, Huang W Q, Hu J S and Hu W P 2020 Adv. Mater. 32 9
16 Chen Y, Yang K, Jiang B, Li J, Zeng M and Fu L 2017 J. Mater. Chem. A 5 8187
17 Karmodak N and Andreussi O 2020 Acs Energy Lett. 5 885
18 Gao G, O'Mullane A P and Du A 2016 ACS Catal. 7 494
19 Chaudhari N K, Jin H, Kim B, Baek D S, Joo S H and Lee K 2017 J. Mater. Chem. A 5 24564
20 Zhang C, Yu G, Ku R, Huang X and Chen W 2019 Appl. Surf. Sci. 481 272
21 Wu H H, Huang H, Zhong J, Yu S, Zhang Q and Zeng X C 2019 Nanoscale 11 12210
22 Zhang R, Yu G, Gao Y, Huang X and Chen W 2020 Inorg. Chem. Front. 7 647
23 Zhao N, Wang L, Zhang Z and Li Y 2019 ACS Appl. Mater. Inter. 11 42014
24 Sharma M D, Mahala C and Basu M 2020 Inorg. Chem. 59 4377
25 Zhao X, He D W, Wang Y S and Fu C 2018 Chin. Phys. B 27 068103
26 Silva J L, Brena B and Araujo C M 2020 J. Phys. Chem. C 124 8726
27 Riyajuddin S, Aziz S K T, Kumar S, Nessim G D and Ghosh K 2020 Chemcatchem 12 1394
28 Li Y Y, Si Y, Han E X, Huang W Q, Hu W Y, Pan A L, Fan X X and Huang G F 2019 J. Phys. D: Appl. Phys. 52 105502
29 Li Y Y, Si Y, Zhou B X, Huang W Q, Hu W, Pan A, Fan X and Huang G F 2019 Nanoscale 11 16393
30 Yu S, Rao Y C, Wu H H and Duan X M 2018 Phys. Chem. Chem. Phys. 20 27970
31 Zhang X, Chen A, Zhang Z, Jiao M and Zhou Z 2018 J. Mater. Chem. A 6 11446
32 Zhang X L, Yang Z X, Yang X, Wang Y L and Lu Z S 2018 Int. J. Hydrog. Energy 43 20573
33 Lu J, Zhang X, Liu D N, Yang N, Huang H, Jin S W, Wang J H, Chu P K and Yu X F 2019 ACS Appl. Mater. Inter. 11 37787
34 Gan Y, Xue X X, Jiang X X, Xu Z, Chen K, Yu J F and Feng Y 2019 J. Phys.: Condens. Matter 32 025202
35 Rajbanshi B and Sarkar P 2017 J. Phys. Chem. Lett. 8 747
36 Blochl 1994 Phys. Rev. B 50 17953
37 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
38 Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
39 Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
40 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
41 Huang T, Chen Q, Cheng M Q, Huang W Q, Hu W Y and Huang G F 2019 J. Phys. D: Appl. Phys. 52 7
42 Chianelli R R, Berhault G, Raybaud P, Kasztelan S, Hafner J and Toulhoat H 2002 Appl. Catal. a-Gen. 227 83
43 Medford A J, Vojvodic A, Hummelshoj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A and Norskov J K 2015 J. Catal. 328 36
44 Gao G, Sun G and Du A 2016 J. Phys. Chem. C 120 16761
45 Huang T, Lian J C, Yang K, Si Y, Wu H Y, Huang W Q, Hu W Y and Huang G F 2020 Physica E 118 113962
[1] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[2] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[3] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[4] Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study
Parvin R, Parvin F, Ali M S, Islam A K M A. Chin. Phys. B, 2016, 25(8): 083101.
[5] First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries
Feng-Ya Rao(饶凤雅), Fang-Hua Ning(宁芳华), Li-Wei Jiang(蒋礼威), Xiang-Ming Zeng(曾祥明), Mu-Sheng Wu(吴木生), Bo Xu(徐波), Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(2): 028202.
[6] Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for formic acid oxidation
Yang Su-Dong(杨苏东), Shen Cheng-Min(申承民), Tong Hao(佟浩), He Wei(何卫), Zhang Xiao-Gang(张校刚), and Gao Hong-Jun(高鸿钧) . Chin. Phys. B, 2011, 20(11): 113301.
No Suggested Reading articles found!