Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024302    DOI: 10.1088/1674-1056/abbbd9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves

F G Mitri†
Santa Fe, NM\/ 87508, USA
Abstract  The purpose of this study is to develop an analytical formalism and derive series expansions for the time-averaged force and torque exerted on a compound coated compressible liquid-like cylinder, insonified by acoustic standing waves having an arbitrary angle of incidence in the polar (transverse) plane. The host medium of wave propagation and the eccentric liquid-like cylinder are non-viscous. Numerical computations illustrate the theoretical analysis with particular emphases on the eccentricity of the cylinder, the angle of incidence and the dimensionless size parameters of the inner and coating cylindrical fluid materials. The method to derive the acoustical scattering, and radiation force and torque components conjointly uses modal matching with the addition theorem, which adequately account for the multiple wave interaction effects between the layer and core fluid materials. The results demonstrate that longitudinal and lateral radiation force components arise. Moreover, an axial radiation torque component is quantified and computed for the non-absorptive compound cylinder, arising from geometrical asymmetry considerations as the eccentricity increases. The computational results reveal the emergence of neutral, positive, and negative radiation force and torque depending on the size parameter of the cylinder, the eccentricity, and the angle of incidence of the insonifying field. Moreover, based on the law of energy conservation applied to scattering, numerical verification is accomplished by computing the extinction/scattering energy efficiency. The results may find some related applications in fluid dynamics, particle trapping, mixing and manipulation using acoustical standing waves.
Keywords:  radiation force      radiation torque      liquid compound cylinder      multiple scattering      acoustical standing waves  
Received:  08 August 2020      Revised:  20 August 2020      Accepted manuscript online:  28 September 2020
PACS:  43.25.Qp (Radiation pressure?)  
  43.25.+y (Nonlinear acoustics)  
  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Corresponding Authors:  Corresponding author. E-mail: F.G.Mitri@ieee.org   

Cite this article: 

F G Mitri Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves 2021 Chin. Phys. B 30 024302

1 Wu J 1991 J. Acoust. Soc. Am. 89 2140
2 Strobl C J, Sch\"alein C, Beierlein U, Ebbecke J and Wixforth A 2004 Appl. Phys. Lett. 85 1427
3 Lim W P, Yao K and Chen Y 2007 J. Phys. Chem. C 111 16802
4 Brodeur P, Dion J L, Garceau J J, Pelletier G and Massicotte D 1989 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36 549
5 Brodeur P 1991 Ultrasonics 29 302
6 Scholz M S, Drinkwater B W and Trask R S 2014 Ultrasonics 54 1015
7 Ding X, Li P, Lin S C S, Stratton Z S, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F and Huang T J 2013 Lab Chip 13 3626
8 Awatani J1955 Memoirs of the Institute of Scientific and Industrial Research, Osaka University 12 95
9 Zhuk A P 1986 Int. Appl. Mech. 22 689
10 Wu J, Du G, Work S S and Warshaw D M 1990 J. Acoust. Soc. Am. 87 581
11 Haydock D 2005 J. Phys. A: Math. Gen. 38 3279
12 Mitri F G 2005 Eur. Phys. J. B 44 71
13 Hasegawa T, Saka K, Inoue N and Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770
14 Hasegawa T, Hino Y, Annou A, Noda H, Kato M and Inoue N 1993 J. Acoust. Soc. Am. 93 154
15 Jamali J, Naei M H, Honarvar F and Rajabi M 2011 J. Mech. 27 227
16 Mitri F G 2006 New J. Phys. 8 138
17 Mitri F G 2005 J. Sound Vib. 284 494
18 Mitri F G 2005 Ultrasonics 43 271
19 Wang J T and Dual J 2009 J. Phys. A: Math. Theor. 42 285502
20 Mitri F G 2015 Ultrasonics 62 244
21 Mitri F G 2015 AIP Adv. 5 097205
22 Mitri F G 2015 J. Appl. Phys. 118 214903
23 Mitri F G 2016 Phys. Fluids 28 077104
24 Mitri F G 2019 Journal of Quantitative Spectroscopy and Radiative Transfer 235 15
25 Mitri F G 2016 Wave Motion 66 31
26 Mitri F G 2017 Ultrasonics 73 236
27 Mitri F G 2016 J. Appl. Phys. 120 104901
28 Gao S, Miao Y, Liu L and Liu X 2018 Chin. Phys. B 27 014302
29 Liang S and Chaohui W 2018 J. Appl. Phys. 123 044504
30 Liang S and Chaohui W 2018 Phys. Rev. E 97 033103
31 Miri A K and Mitri F G 2011 Ultrasound Med. Biol. 37 301
32 Mitri F G 2018 J. Phys. Commun. 2 045019
33 Mitri F G 2018 Appl. Math. Model. 64 688
34 Mitri F G 2020 Physics Open 4 100029
35 Roumeliotis J A and Kakogiannos N B 1995 J. Acoust. Soc. Am. 97 2074
36 Danila E B, Conoir J M and Izbicki J L 1998 Acta Acust. United Ac. 84 38
37 Hasheminejad S M and Alibakhshi M A 2008 Journal of Zhejiang University-Science A 9 65
38 Hasheminejad S M and Kazemirad S 2008 J. Sound Vib. 318 506
39 Hasheminejad S M and Kazemirad S 2008 Acta Acust. United Ac. 94 79
40 Mitri F G 2020 Chin. Phys. B 29 114302
41 Morse P M and Feshbach H1953 Methods of theoretical physics, Vol. 2 (New York: McGraw-Hill Book Co.)
42 Gradshteyn I S and Ryzhik I M2007 Table of Integrals, Series, and Products (San Diego, CA: Academic Press)
43 Ivanov E A1970 Diffraction of electromagnetic waves on two bodies ((Nauka i Tekhnika Press, Minsk, 1968): NASA Technical Translation F-597)
44 Mitri F G 2017 J. Appl. Phys. 121 144904
45 Mitri F G 2017 J. Phys. Commun. 1 055015
46 Maidanik G 1958 J. Acoust. Soc. Am. 30 620
47 Wiscombe W J 1980 Appl. Opt. 19 1505
48 Mitri F G 2015 Ultrasonics 62 20
49 Varatharajulu V 1977 J. Math. Phys. 18 537
50 van de Hulst H C1957 Light scattering by small particles(John Wiley and Sons, Inc.)
51 Mitri F G 2015 Europhys. Lett. 112 34002
52 Mitri F G 2017 Ultrasonics 74 62
53 Waterman P C 1965 Proc. IEEE 53 805
54 Waterman P C 1969 J. Acoust. Soc. Am. 45 1417
55 Mitri F G 2017 Ann. Phys. 386 1
56 Mitri F G 2017 J. Appl. Phys. 121 144901
57 Mitri F G 2017 J. Phys. D: Appl. Phys. 50 325601
58 Graf J H 1893 Mathematische Annalen 43 136
59 Abramowitz M and Stegun I A1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables(Dover Publications)
[1] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[2] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[3] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[4] Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2021, 30(4): 044302.
[5] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[6] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[7] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[8] Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder
F G Mitri. Chin. Phys. B, 2020, 29(11): 114302.
[9] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
[10] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[11] Rapid measurement of transmission matrix with the sequential semi-definite programming method
Zhenfeng Zhang(张振峰), Bin Zhang(张彬), Qi Feng(冯祺), Huimei He(何惠梅), Yingchun Ding(丁迎春). Chin. Phys. B, 2018, 27(8): 084201.
[12] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[13] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
[14] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[15] Tunable resonant radiation force exerted on semiconductor quantum well nanostructures:Nonlocal effects
Guang-Hui Wang(王光辉), Xiong-Shuo Yan(颜雄硕), Jin-Ke Zhang(张金珂). Chin. Phys. B, 2017, 26(10): 106802.
No Suggested Reading articles found!