ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves |
F G Mitri† |
Santa Fe, NM\/ 87508, USA |
|
|
Abstract The purpose of this study is to develop an analytical formalism and derive series expansions for the time-averaged force and torque exerted on a compound coated compressible liquid-like cylinder, insonified by acoustic standing waves having an arbitrary angle of incidence in the polar (transverse) plane. The host medium of wave propagation and the eccentric liquid-like cylinder are non-viscous. Numerical computations illustrate the theoretical analysis with particular emphases on the eccentricity of the cylinder, the angle of incidence and the dimensionless size parameters of the inner and coating cylindrical fluid materials. The method to derive the acoustical scattering, and radiation force and torque components conjointly uses modal matching with the addition theorem, which adequately account for the multiple wave interaction effects between the layer and core fluid materials. The results demonstrate that longitudinal and lateral radiation force components arise. Moreover, an axial radiation torque component is quantified and computed for the non-absorptive compound cylinder, arising from geometrical asymmetry considerations as the eccentricity increases. The computational results reveal the emergence of neutral, positive, and negative radiation force and torque depending on the size parameter of the cylinder, the eccentricity, and the angle of incidence of the insonifying field. Moreover, based on the law of energy conservation applied to scattering, numerical verification is accomplished by computing the extinction/scattering energy efficiency. The results may find some related applications in fluid dynamics, particle trapping, mixing and manipulation using acoustical standing waves.
|
Received: 08 August 2020
Revised: 20 August 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
43.25.Qp
|
(Radiation pressure?)
|
|
43.25.+y
|
(Nonlinear acoustics)
|
|
43.20.+g
|
(General linear acoustics)
|
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
Corresponding Authors:
†Corresponding author. E-mail: F.G.Mitri@ieee.org
|
Cite this article:
F G Mitri Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves 2021 Chin. Phys. B 30 024302
|
1 Wu J 1991 J. Acoust. Soc. Am. 89 2140 2 Strobl C J, Sch\"alein C, Beierlein U, Ebbecke J and Wixforth A 2004 Appl. Phys. Lett. 85 1427 3 Lim W P, Yao K and Chen Y 2007 J. Phys. Chem. C 111 16802 4 Brodeur P, Dion J L, Garceau J J, Pelletier G and Massicotte D 1989 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36 549 5 Brodeur P 1991 Ultrasonics 29 302 6 Scholz M S, Drinkwater B W and Trask R S 2014 Ultrasonics 54 1015 7 Ding X, Li P, Lin S C S, Stratton Z S, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F and Huang T J 2013 Lab Chip 13 3626 8 Awatani J1955 Memoirs of the Institute of Scientific and Industrial Research, Osaka University 12 95 9 Zhuk A P 1986 Int. Appl. Mech. 22 689 10 Wu J, Du G, Work S S and Warshaw D M 1990 J. Acoust. Soc. Am. 87 581 11 Haydock D 2005 J. Phys. A: Math. Gen. 38 3279 12 Mitri F G 2005 Eur. Phys. J. B 44 71 13 Hasegawa T, Saka K, Inoue N and Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770 14 Hasegawa T, Hino Y, Annou A, Noda H, Kato M and Inoue N 1993 J. Acoust. Soc. Am. 93 154 15 Jamali J, Naei M H, Honarvar F and Rajabi M 2011 J. Mech. 27 227 16 Mitri F G 2006 New J. Phys. 8 138 17 Mitri F G 2005 J. Sound Vib. 284 494 18 Mitri F G 2005 Ultrasonics 43 271 19 Wang J T and Dual J 2009 J. Phys. A: Math. Theor. 42 285502 20 Mitri F G 2015 Ultrasonics 62 244 21 Mitri F G 2015 AIP Adv. 5 097205 22 Mitri F G 2015 J. Appl. Phys. 118 214903 23 Mitri F G 2016 Phys. Fluids 28 077104 24 Mitri F G 2019 Journal of Quantitative Spectroscopy and Radiative Transfer 235 15 25 Mitri F G 2016 Wave Motion 66 31 26 Mitri F G 2017 Ultrasonics 73 236 27 Mitri F G 2016 J. Appl. Phys. 120 104901 28 Gao S, Miao Y, Liu L and Liu X 2018 Chin. Phys. B 27 014302 29 Liang S and Chaohui W 2018 J. Appl. Phys. 123 044504 30 Liang S and Chaohui W 2018 Phys. Rev. E 97 033103 31 Miri A K and Mitri F G 2011 Ultrasound Med. Biol. 37 301 32 Mitri F G 2018 J. Phys. Commun. 2 045019 33 Mitri F G 2018 Appl. Math. Model. 64 688 34 Mitri F G 2020 Physics Open 4 100029 35 Roumeliotis J A and Kakogiannos N B 1995 J. Acoust. Soc. Am. 97 2074 36 Danila E B, Conoir J M and Izbicki J L 1998 Acta Acust. United Ac. 84 38 37 Hasheminejad S M and Alibakhshi M A 2008 Journal of Zhejiang University-Science A 9 65 38 Hasheminejad S M and Kazemirad S 2008 J. Sound Vib. 318 506 39 Hasheminejad S M and Kazemirad S 2008 Acta Acust. United Ac. 94 79 40 Mitri F G 2020 Chin. Phys. B 29 114302 41 Morse P M and Feshbach H1953 Methods of theoretical physics, Vol. 2 (New York: McGraw-Hill Book Co.) 42 Gradshteyn I S and Ryzhik I M2007 Table of Integrals, Series, and Products (San Diego, CA: Academic Press) 43 Ivanov E A1970 Diffraction of electromagnetic waves on two bodies ((Nauka i Tekhnika Press, Minsk, 1968): NASA Technical Translation F-597) 44 Mitri F G 2017 J. Appl. Phys. 121 144904 45 Mitri F G 2017 J. Phys. Commun. 1 055015 46 Maidanik G 1958 J. Acoust. Soc. Am. 30 620 47 Wiscombe W J 1980 Appl. Opt. 19 1505 48 Mitri F G 2015 Ultrasonics 62 20 49 Varatharajulu V 1977 J. Math. Phys. 18 537 50 van de Hulst H C1957 Light scattering by small particles(John Wiley and Sons, Inc.) 51 Mitri F G 2015 Europhys. Lett. 112 34002 52 Mitri F G 2017 Ultrasonics 74 62 53 Waterman P C 1965 Proc. IEEE 53 805 54 Waterman P C 1969 J. Acoust. Soc. Am. 45 1417 55 Mitri F G 2017 Ann. Phys. 386 1 56 Mitri F G 2017 J. Appl. Phys. 121 144901 57 Mitri F G 2017 J. Phys. D: Appl. Phys. 50 325601 58 Graf J H 1893 Mathematische Annalen 43 136 59 Abramowitz M and Stegun I A1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables(Dover Publications) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|