Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
Abstract The purpose of this study is to develop an analytical formalism and derive series expansions for the time-averaged force and torque exerted on a compound coated compressible liquid-like cylinder, insonified by acoustic standing waves having an arbitrary angle of incidence in the polar (transverse) plane. The host medium of wave propagation and the eccentric liquid-like cylinder are non-viscous. Numerical computations illustrate the theoretical analysis with particular emphases on the eccentricity of the cylinder, the angle of incidence and the dimensionless size parameters of the inner and coating cylindrical fluid materials. The method to derive the acoustical scattering, and radiation force and torque components conjointly uses modal matching with the addition theorem, which adequately account for the multiple wave interaction effects between the layer and core fluid materials. The results demonstrate that longitudinal and lateral radiation force components arise. Moreover, an axial radiation torque component is quantified and computed for the non-absorptive compound cylinder, arising from geometrical asymmetry considerations as the eccentricity increases. The computational results reveal the emergence of neutral, positive, and negative radiation force and torque depending on the size parameter of the cylinder, the eccentricity, and the angle of incidence of the insonifying field. Moreover, based on the law of energy conservation applied to scattering, numerical verification is accomplished by computing the extinction/scattering energy efficiency. The results may find some related applications in fluid dynamics, particle trapping, mixing and manipulation using acoustical standing waves.
F G Mitri Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves 2021 Chin. Phys. B 30 024302
Multiple scattering and modeling of laser in fog Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.