Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023104    DOI: 10.1088/1674-1056/26/2/023104

Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II

Jianpeng Liu(刘建鹏)1, Jiguang Li(李冀光)2, Hongxin Zou(邹宏新)1
1 Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China;
2 Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Accurate isotope shift factors of the 2s2p 3,1P1-2s21S0 transitions in B II, obtained with the multi-configuration Dirac-Hartree-Fock and the relativistic configuration interaction methods, are reported. We found a linear correlation relation between the mass shift factors and the energies for the transitions concerned, considering all-order electron correlations. This relation is important for estimating the uncertainty in the calculation of isotope shift factors. These atomic data can be used to extract the nuclear mean-square charge radii of the boron isotopes with halo structures or to resolve the high precise spectroscopy of B II in astronomical observation.

Keywords:  isotope shifts      B II      halo state      MCDHF method  
Received:  17 October 2016      Revised:  16 November 2016      Accepted manuscript online: 
PACS:  31.30.Gs (Hyperfine interactions and isotope effects) (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 91436103, 11404025, and 91536106), the Research Program of National University of Defense Technology, China (Grant No. JC15-0203), and the China Postdoctoral Science Foundation (Grant No. 2014M560061).

Corresponding Authors:  Jiguang Li, Hongxin Zou     E-mail:;

Cite this article: 

Jianpeng Liu(刘建鹏), Jiguang Li(李冀光), Hongxin Zou(邹宏新) Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II 2017 Chin. Phys. B 26 023104

[1] Tanihata I, Hamagaki H, Hashimoto O, Shida Y, Yoshikawa N, Sugimoto K, Yamakawa O, Kobayashi T and Takahashi N 1985 Phys. Rev. Lett. 55 2676
[2] Nörtershäuser W, Tiedemann D, Žáková M, et al. 2009 Phys. Rev. Lett. 102 062503
[3] Orts R S, Harman Z, Crespo Lóez-Urrutia J R, et al. 2006 Phys. Rev. Lett. 97 103002
[4] Yan Z C, Nörtershäuser W and Drake G W F 2008 Phys. Rev. Lett. 100 243002
[5] Pálffy A 2010 Contemp. Phys. 51 471
[6] Cheal B an6d Flanagan K T 2010 J. Phys. G: Nucl. Part. Phys. 27 113101
[7] Lee J, Chen J and Leanhardt A E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 075003
[8] Charlwood F C, Billowesa J, Campbella P, et al. 2010 Phys. Lett. B 690 346
[9] Kluge H 2010 Hyper. Interact. 196 295
[10] Minamisono T, Ohtsubo T, Minami I, et al. 1992 Phys. Rev. Lett. 69 (14) 2058
[11] Aguilera E F, Martinez-Quiroz E, Lizcano D, et al. 2009 Phys. Rev. C 79 021601
[12] Negoita F, Borcea C, Carstoiu F, et al. 1996 Phys. Rev. C 54 1787
[13] Tanihata I 1988 Nucl. Phys. A 488 113
[14] Litzén U, Zethson T, Jösson P et al. 1998 Phys. Rev. A 57 2477
[15] Federman S R, Lambert D L, Cardelli J A and Sheffer Y 1996 Nature 381 764
[16] King F W, Quicker D and Langer J 2011 J. Chem. Phys. 134 124114
[17] Komasa J, Rychlewski J and Jankowski K 2002 Phys. Rev. A 65 042507
[18] Gálvez F J, Buendia E and Sarsa A 1999 J. Chem. Phys. 111 10903
[19] Jönsson P, Fischer C F and Godefroid M 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1233
[20] Jönsson P, Johansson S G and Fischer C F 1994 Astrophys. J. Lett. 429 L45-L48
[21] Nazé C, Verdebouta S, Rynkun P, et al. 2014 At. Data Nucl. Data Tables 100 1197
[22] Korol V A and Kozlov M G 2007 Phys. Rev. A 76 022103
[23] Godefroid M, Jönsson P and Fischer C F 1998 Phys. Scr. T78 33
[24] Carette T and Godefroid M 2011 Phys. Rev. A 83 062505
[25] Carette T, Drag C, Scharf O, et al. 2010 Phys. Rev. A 81 042522
[26] Carette T and Godefroid M 2016 arXiv: 1602.06574p
[27] Tupitsyn I I, Shabaev V M, Crespo Lóez-Urrutia J R, et al. 2003 Phys. Rev. A 68 022511
[28] Gaidamauskas E, Nazé C, Rynkun P, et al. 2011 J. Phys. B: At. Mol. Opt. Phys. 44 175003
[29] Torbohm G, Fricke B and Rosén A 1985 Phys. Rev. A 31 2038
[30] Blundell S A, Baird P E G, Palmer C W P, Stacey D N and Woodgate G K 1987 J. Phys. B: At. Mol. Phys. 20 3663
[31] Li J G, Jösson P, Godefroid M, et al. 2012 Phys. Rev. A 052523
[32] Fischer C F, Brage T and Jösson P 1997 Computational Atomic Structure: An MCHF Approach (Bristol and Philadelphia: Institute of Physics Publishing)
[33] Jönsson P, He X, Fischer C F and Grant I 2007 Comput. Phys. Commun. 177 597
[34] Jönsson P, Gaigalas G, Bierón J, Fischer C F and Grant I 2013 Comput. Phys. Commun. 184 2197
[35] Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M and Jönsson P 2013 Comput. Phys. Commun. 184 2187
[36] Godefroid M, Fischer C F and Jönsson P 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1079
[1] Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions
Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2018, 27(8): 083102.
[2] Theoretical investigation on forbidden transition properties of fine-structure splitting in 2D state for K-like ions with 26 ≤ Z ≤ 36
Jian-Peng Liu(刘建鹏), Cheng-Bin Li(李承斌), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2017, 26(10): 103201.
[3] Weak- and hyperfine-interaction-induced 1s2s 1S0→1s2 1S0 E1 transition rates of He-like ions
Laima Radžiūtė, Erikas Gaidamauskas, Gediminas Gaigalas, Li Ji-Guang, Dong Chen-Zhong, Per Jönsson. Chin. Phys. B, 2015, 24(4): 043103.
[4] Isotopic effect of Cl2+ rovibronic spectra in the A-X system
Wu Ling, Yang Xiao-Hua, Chen Yang-Qin. Chin. Phys. B, 2009, 18(7): 2724-2728.
[5] Measurement of hyperfine structure and isotope shifts in the 580.56nm line of 142-145,146,148,150Nd+
Ma Hong-Liang. Chin. Phys. B, 2005, 14(3): 511-515.
No Suggested Reading articles found!