Special Issue:
SPECIAL TOPIC — Water at molecular level
|
SPECIAL TOPIC—Water at molecular level |
Prev
Next
|
|
|
Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches |
Bin-Ze Tang(唐宾泽)1, †, Xue-Jia Yu(余雪佳)1, †, Sergey V. Buldyrev2,, ‡, Nicolas Giovambattista3,4,§, and Li-Mei Xu(徐莉梅)1,5,¶ |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2 Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033, United States 3 Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States 4 Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States 5 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract The formation of nanoscale water capillary bridges (WCBs) between chemically heterogeneous (patchy) surfaces plays an important role in different scientific and engineering applications, including nanolithography, colloidal aggregation, and bioinspired adhesion. However, the properties of WCB of nanoscale dimensions remain unclear. Using molecular dynamics simulations, we investigate the geometrical and thermodynamic properties of WCB confined between chemically heterogeneous surfaces composed of circular hydrophilic patches on a hydrophobic background. We find that macroscopic capillary theory provides a good description of the WCB geometry and forces induced by the WCB on the confining surfaces even in the case of surface patches with diameters of only 4 nm. Upon stretching, the WCB contact angle changes from hydrophobic-like values (θ > 90°) to hydrophilic-like values (θ < 90°) until it finally breaks down into two droplets at wall separations of ∼ 9–10 nm. We also show that the studied nanoscale WCB can be used to store relevant amounts of energy EP and explore how the walls patch geometry can be improved in order to maximize EP. Our findings show that nanoscale WCB can, in principle, be exploited for the design of clean energy storage devices as well as actuators that respond to changes in relative humidity. The present results can also be of crucial importance for the understanding of water transport in nanoporous media and nanoscale engineering systems.
|
Received: 27 July 2020
Revised: 01 September 2020
Accepted manuscript online: 09 September 2020
|
Fund: Project support by the National Natural Science Foundation of China (Grant Nos. 11525520 and 11935002) and the National Key Research and Development Program of China (Grant No. 2016YFA0300901). |
Corresponding Authors:
†These authors contributed equally. ‡Corresponding author. E-mail: buldyrev@yu.edu
|
Cite this article:
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶ Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches 2020 Chin. Phys. B 29 114703
|
[1] |
|
[2] |
|
[3] |
|
[4] |
Anzivino C, Chang F Q, Soligno G, Roij R V, Kegelb W K, Dijkstra M 2019 Soft Matter 15 2638 DOI: 10.1039/C8SM02361A
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
Goegelein C, Brinkmann M, Schroeter M, Herminghaus S 2010 Langmuir 26 17184 DOI: 10.1021/la103062s
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
Mariappan D D, Kim S, Boutilier M S H, Zhao J J, Zhao H B, Beroz J, Muecke U, Sojoudi H, Gleason K, Brun P T, Hart A J 2019 Langmuir 35 7659 DOI: 10.1021/acs.langmuir.9b00460
|
[23] |
Chen X, Goodnight D, Gao Z, Cavusoglu A H, Sabharwal N, DeLay M, Driks A, Sahin O 2015 Nat. Commun. 6 7346 DOI: 10.1038/ncomms8346
|
[24] |
Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671 DOI: 10.1021/acs.jpcc.8b06780
|
[25] |
|
[26] |
|
[27] |
Berendsen H J C, Grigera J C, Stroatsma T P 1987 J. Phys. Chem. 91 6269 DOI: 10.1021/j100308a038
|
[28] |
|
[29] |
Giovambattista N, Debenedetti P G, Rossky P J 2007 J. Phys. Chem. B 111 9581 DOI: 10.1021/jp071957s
|
[30] |
|
[31] |
Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345 DOI: 10.1021/jp0268112
|
[32] |
|
[33] |
Giovambattista N, Debenedetti P G, Rossky P J 2007 J. Phys. Chem. C 111 1323 DOI: 10.1021/jp065419b
|
[34] |
|
[35] |
|
[36] |
Kim S H, Kwon C H, Park K, Mun T J, Lepro’o X, Baughman R H, Spinks G M, Kim S J 2016 Sci. Rep. 6 23016 DOI: 10.1038/srep23016
|
[37] |
|
[38] |
Xu W, Zheng H, Liu Y, Zhou X F, Zhang C, Song Y X, Deng X, Leung M, Yang Z B, Xu R X, Wang Z L, Zeng X C, Wang Z K 2020 Nature 578 392 DOI: 10.1038/s41586-020-1985-6
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|