Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104302    DOI: 10.1088/1674-1056/ab9c0e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Symmetry-controlled edge states in graphene-like topological sonic crystal

Zhang-Zhao Yang(杨彰昭)1, Jin-Heng Chen(陈晋恒)1, Yao-Yin Peng(彭尧吟)1, and Xin-Ye Zou(邹欣晔)1,2,
1 Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Unique topological states emerged in various topological insulators (TI) have been proved with great application value for robust wave regulation. In this work, we demonstrate the parity inversion related to the definition of the primitive cell in one common lattice, and realize a type of symmetry-controlled edge states confined on the zigzag interfaces of the graphene-like sonic topological crystal. By simply sliding the selected ‘layer’ near the interface, the coupling of the pseudospin states induced by the multiple scattering for the C6v lattice results in the adjustment of the edge states. Based on the physics of the states, we experimentally propose a prototype of acoustic topological filter hosting multiple channels with independent adjustable edge states and realize the selective high transmission. Our work diversifies the prospects for the applications of the gapped edge states in the robust wave regulation, and proposes a frame to design new topological devices.

Keywords:  acoustic higher-order topological insulator      acoustic filter      controllable edge states  
Received:  11 April 2020      Revised:  23 May 2020      Accepted manuscript online:  12 June 2020
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  52.35.Dm (Sound waves)  
Corresponding Authors:  Corresponding author. E-mail: xyzou@nju.edu.cn   
About author: 
†Corresponding author. E-mail: xyzou@nju.edu.cn
* Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006, 11934009, and 11690030), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191245), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380131), and the State Key Laboratory of Acoustics, Chinese Academy of Sciences.

Cite this article: 

Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)† Symmetry-controlled edge states in graphene-like topological sonic crystal 2020 Chin. Phys. B 29 104302

Fig. 1.  

(a) Schematic of two selected supercells (red dashed lines) based on one common graphene-like lattice, the corners and the edges of the supercells represent the pseudo-atoms and the corresponding hoppings, respectively. The corresponding energy band structures labeled with parities are presented in (b) and (c). (d) and (e) The pressure field distributions of the first two double-degenerate bands from bottom to top at M point of the two supercells, respectively. The opposite parities indicate the parity inversion.

Fig. 2.  

Band structures of the ribbons composed of (a) 30 trivial supercells and (b) 15 trivial and 15 nontrivial supercells, being finite along y direction and periodic along x direction.

Fig. 3.  

(a) Schematic of the structure divided into independent layers. Inset: Details of the configuration near the interface. (b) βA-dependent band-edge frequencies for the supercells with k = 0 within a translation period. g1 and g2 represent the ranges between the two topological bands. Energy band structures with distinct edge states for (c) βA = 0.125, (d) 0.25, and (e) 0.375, respectively.

Fig. 4.  

(a) Energy band structure of the ribbon with two independent interfaces, the two pairs of the edge states are independently emerging on the specific interface. (b) Pressure field distributions and intensity flows of the pseudo-spin-dependent edge states for k = ± 0.05 × 2 π / ax on the interfaces of the ribbon.

Fig. 5.  

(a) Experimental setup of the two-dimensional acoustic topological filter. (b) Measured bulk (green) and port 3 (red) transmission spectra for βP1 = βP3 = 0.25. (c) Measured bulk (green) and port 3 (red) transmission spectra for βP1 = βP3 = 0.5. The gray regions in both (b) and (c) represent the theoretic range of the edge states.

Fig. 6.  

(a) Measured transmission spectra for port 2 (red), port 3 (green), and port 4 (blue) when βPi = 0. (b) Measured transmission spectra for port 2 (red), port 3 (green), port 4 (blue) and the sum of the three ports for βP1 = βP3 = 0.5 and βP2 = βP4 = 0.25. The green dashed curve representing the total transmission loss exhibits lossless transmission in the two theoretical frequency ranges marked with grey. (c) and (d) The simulated acoustic energy transmission distributions for 6400 Hz and 7125 Hz, respectively.

Fig. A1.  

Pseudo-spin states at (a) Γ and (b) M. In (a), dmod 1,2 represents the double-degenerate modes below the upper gap at Γ, and pmod 1,2 represents the modes upon the upper gap. In (b), the labels of the four dotted boxes represent the count of the double-degenerate bands from bottom to top. The (±) represents the parity of each mode, and circulation arrow of energy flow demonstrates the certain pseudo-spin state. The relative band structure is shown in Fig. 3(b).

Fig. A2.  

Schematic diagrams of the two conditions: (a) the upper and the lower materials are the same and (b) the upper and the lower materials are different. The structure in (a) appears to be insulating, and the structure in (b) appears to be conductive.

Fig. B1.  

Comparison of the simulated acoustic field distribution at 6.84 kHz for topological interface and ordinary defects, corresponding to (a) a cavity and (b) a disturbance in the waveguide. The red and black arrows represent propagation of the topological states and ordinary sound, respectively. (c) Simulated transmission spectra for perfect topological interface (red curve), topological interface with a cavity (green curve), topological interface with a disturbance (black curve) and ordinary defects (blue dashed curve). The white region represents the predicted range of edge states.

[1]
Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802 DOI: 10.1103/PhysRevLett.95.146802
[2]
Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801 DOI: 10.1103/PhysRevLett.95.226801
[3]
Moore J E 2010 Nature 464 194 DOI: 10.1038/nature08916
[4]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[5]
Qi X, Zhang S C 2011 Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.1057
[6]
Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904 DOI: 10.1103/PhysRevLett.100.013904
[7]
Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905 DOI: 10.1103/PhysRevLett.100.013905
[8]
Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907 DOI: 10.1038/nphys2063
[9]
Poo Y, Wu R, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903 DOI: 10.1103/PhysRevLett.106.093903
[10]
Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196 DOI: 10.1038/nature12066
[11]
Khanikaev A B, Mousavi S H, Tse W, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233 DOI: 10.1038/nmat3520
[12]
Liang G Q, Chong Y D 2013 Phys. Rev. Lett. 110 203904 DOI: 10.1103/PhysRevLett.110.203904
[13]
Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821 DOI: 10.1038/nphoton.2014.248
[14]
Wu L, Hu X 2015 Phys. Rev. Lett. 114 223901 DOI: 10.1103/PhysRevLett.114.223901
[15]
Khanikaev A B, Shvets G 2017 Nat. Photon. 11 763 DOI: 10.1038/s41566-017-0048-5
[16]
Gao F, Xue H, Yang Z, Lai K, Yu Y, Lin X, Chong Y, Shvets G, Zhang B 2018 Nat. Phys. 14 140 DOI: 10.1038/nphys4304
[17]
Khanikaev A B, Fleury R, Mousavi S H, Alù A 2015 Nat. Commun. 6 8260 DOI: 10.1038/ncomms9260
[18]
Xiao M, Chen W, He W, Chan C T 2015 Nat. Phys. 11 920 DOI: 10.1038/nphys3458
[19]
Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301 DOI: 10.1103/PhysRevLett.114.114301
[20]
Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744 DOI: 10.1038/ncomms11744
[21]
Peng Y, Qin C, Zhao D, Shen Y, Xu X, Bao M, Jia H, Zhu X 2016 Nat. Commun. 7 13368 DOI: 10.1038/ncomms13368
[22]
He C, Ni X, Ge H, Sun X, Chen Y, Lu M, Liu X, Chen Y 2016 Nat. Phys. 12 1124 DOI: 10.1038/nphys3867
[23]
Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2017 Nat. Phys. 13 369 DOI: 10.1038/nphys3999
[24]
Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303 DOI: 10.1103/PhysRevLett.118.084303
[25]
Lu J, Qiu C, Deng W, Huang X, Li F, Zhang F, Chen S, Liu Z 2018 Phys. Rev. Lett. 120 116802 DOI: 10.1103/PhysRevLett.120.116802
[26]
Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302 DOI: 10.1103/PhysRevLett.122.014302
[27]
Fang C, Gilbert M J, Bernevig B A 2012 Phys. Rev. B 86 115112 DOI: 10.1103/PhysRevB.86.115112
[28]
Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115 DOI: 10.1103/PhysRevB.96.245115
[29]
Liu F, Wakabayashi K 2017 Phys. Rev. Lett. 118 076803 DOI: 10.1103/PhysRevLett.118.076803
[30]
Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer P W 2017 Phys. Rev. Lett. 119 246401 DOI: 10.1103/PhysRevLett.119.246401
[31]
Song Z, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402 DOI: 10.1103/PhysRevLett.119.246402
[32]
Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61 DOI: 10.1126/science.aah6442
[33]
Ezawa M 2018 Phys. Rev. Lett. 120 026801 DOI: 10.1103/PhysRevLett.120.026801
[34]
Liu F, Deng H, Wakabayashi K 2019 Phys. Rev. Lett. 122 086804 DOI: 10.1103/PhysRevLett.122.086804
[35]
Liu F, Deng H, Wakabayashi K 2018 Phys. Rev. B 97 035442 DOI: 10.1103/PhysRevB.97.035442
[36]
Liu F, Yamamoto M, Wakabayashi K 2017 J. Phys. Soc. Jpn. 86 123707 DOI: 10.7566/JPSJ.86.123707
[37]
Serra-Garcia M, Peri V, Süsstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342 DOI: 10.1038/nature25156
[38]
Fan H, Xia B, Tong L, Zheng S, Yu D 2019 Phys. Rev. Lett. 122 204301 DOI: 10.1103/PhysRevLett.122.204301
[39]
Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346 DOI: 10.1038/nature25777
[40]
Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925 DOI: 10.1038/s41567-018-0246-1
[41]
Noh J, Benalcazar W A, Huang S, Collins M J, Chen K P, Hughes T L, Rechtsman M C 2018 Nat. Photon. 12 408 DOI: 10.1038/s41566-018-0179-3
[42]
Xie B, Wang H, Wang H, Zhu X, Jiang J, Lu M, Chen Y 2018 Phys. Rev. B 98 205147 DOI: 10.1103/PhysRevB.98.205147
[43]
Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A, Hafezi M 2019 Nat. Photon. 13 692 DOI: 10.1038/s41566-019-0452-0
[44]
Li M, Zhirihin D, Gorlach M, Ni X, Filonov D, Slobozhanyuk A, Alù A, Khanikaev A B 2020 Nat. Photon. 14 89 DOI: 10.1038/s41566-019-0561-9
[45]
Xue H, Yang Y, Gao F, Chong Y, Zhang B 2019 Nat. Mater. 18 108 DOI: 10.1038/s41563-018-0251-x
[46]
Ni X, Weiner M, Alù A, Khanikaev A B 2019 Nat. Mater. 18 113 DOI: 10.1038/s41563-018-0252-9
[47]
Zhang X, Wang H, Lin Z, Tian Y, Xie B, Lu M, Chen Y, Jiang J 2019 Nat. Phys. 15 582 DOI: 10.1038/s41567-019-0472-1
[48]
Chen Z, Xu C, Al Jahdali R, Mei J, Wu Y 2019 Phys. Rev. B 100 075120 DOI: 10.1103/PhysRevB.100.075120
[49]
Zhang Z, Rosendo López M, Cheng Y, Liu X, Christensen J 2019 Phys. Rev. Lett. 122 195501 DOI: 10.1103/PhysRevLett.122.195501
[50]
Yu S, Ni X, Xu Y, He C, Priyanka N, Lu M, Chen Y 2016 Chin. Phys. Lett. 33 044302 DOI: 10.1088/0256-307X/33/4/044302
[51]
Khelif A, Choujaa A, Benchabane S, Djafari-rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400 DOI: 10.1063/1.1757642
[52]
Ahmet C, Olgun A K, Bulent U 2013 Chin. Phys. B 22 114301 DOI: 10.1088/1674-1056/22/11/114301
[53]
Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y, Iwamoto S 2019 Optica 6 786 DOI: 10.1364/OPTICA.6.000786
[54]
Ryo O, Shin H, Takeshi N 2019 Phys. Rev. B 100 235302 DOI: 10.1103/PhysRevB.100.235302
[55]
Kong X, Yue L, Chen Y, Liu Y 2012 Chin. Phys. B 21 096101 DOI: 10.1088/1674-1056/21/9/096101
[56]
Fang Z, Hou Z 2018 Chin. Phys. Lett. 35 054601 DOI: 10.1088/0256-307X/35/5/054601
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[3] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[4] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[5] An improved lumped parameter model predicting attenuation of earmuff with air leakage
Xu Zhong(仲旭), Zhe Chen(陈哲), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(11): 114301.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Synthetical optimization of the structure dimension for the thermoacoustic regenerator
Huifang Kang(康慧芳), Lingxiao Zhang(张凌霄), Jun Shen(沈俊),Xiachen Ding(丁夏琛), Zhenxing Li(李振兴), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(3): 034301.
[9] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[10] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[11] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[12] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[13] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[14] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[15] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
No Suggested Reading articles found!