Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104301    DOI: 10.1088/1674-1056/ab9c11
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction

Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡
1 School of Computer and Information, Hefei University of Technology, Hefei 230009, China
Abstract  

Acoustic vortex (AV) beam is triggering the significant research interest in information and communication sciences due to its infinite and mutual orthogonal orbital angular momentums (OAMs). Therefore, measuring the topological charges of an AV beams become a task with great significance. In this work, we present a Fraunhofer diffraction (FD) pattern of an AV beam that can be used to quantitatively detect the OAMs of AV beams. We both theoretically and numerically investigate the FD patterns of AV beams passing through a multipoint interferometer (MPI). It is demonstrated that the topological charges of the AV beams can be determined from the interference intensity patterns. The proposed method may pave the way to the practical applications of AV beams.

Keywords:  acoustic vortex      multipoint interferometer (MPI)      topological charge      Fraunhofer diffraction (FD)  
Received:  27 February 2020      Revised:  06 May 2020      Accepted manuscript online:  12 June 2020
PACS:  43.60.+d (Acoustic signal processing)  
  43.30.Es (Velocity, attenuation, refraction, and diffraction in water, Doppler effect)  
Corresponding Authors:  Corresponding author. E-mail: ciangela@hfut.edu.cn Corresponding author. E-mail: guozhongyi@hfut.edu.cn   
About author: 
†Corresponding author. E-mail: ciangela@hfut.edu.cn
‡Corresponding author. E-mail: guozhongyi@hfut.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 61775050 and 11804073), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085MF188 and 1808085QA21), and the Fundamental Research Funds for the Central Universities, China (Grant No. PA2019GDZC0098).

Cite this article: 

Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡ Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction 2020 Chin. Phys. B 29 104301

Fig. 1.  

Geometry and notation of generic MPI consisting of N points, uniformly distributed over a circle of radius a. The points are indicated by white dots and the angular coordinate of the n-th point is αn = 2π nN−1.

Fig. 2.  

Simulated far-field intensity patterns behind multipoint interferometer of N points illuminated by AV beam with topological charge l.

Fig. 3.  

Simulated far-field intensity patterns behind MPI with N points illuminated by AV beam with topological charge l, with patterns for l = |m| and l = – |m| being mirrored in x axis.

Fig. 4.  

(a) Displacement of MPI with respect to propagation axis of impinging beam with d for N = 6, and (b) MPI axis tilted with respect to the propagation axis of the impinging beam with θ for N = 6.

Fig. 5.  

Far-field intensity patterns behind a multipoint interferometer for N = 5 illuminated by AV with l = 2 displacement and tilt of the multipoint interferometer with respect to the propagation axis of impinging beam with (a) d = 0 mm with θ from 0° to 20°, (b) d = 0.3 mm with θ from 0° to 20°, (c) d = 0.6 mm with θ from 0° to 20°, and (d) d = 0.9 mm with θ from 0 ° to 20°. A displacement and a tilt of the multipoint interferometer with respect to the propagation axis of the impinging beam result in distorted and blurred interference patterns.

[1]
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185 DOI: 10.1103/PhysRevA.45.8185
[2]
Guo Z Y, Qu S L, Han Y H, Liu S T 2007 Opt. Commun. 280 23 DOI: 10.1016/j.optcom.2007.08.041
[3]
Zhang J R, Guo Z Y, Ge C W, Wang W, Li R Z, Sun Y X, Shen F, Qu S L, Gao J 2015 Opt. Express 23 17883 DOI: 10.1364/OE.23.017883
[4]
Kai C H, Feng Z K, Dedo M I, Huang P, Guo K, Shen F, Gao J, Guo Z Y 2019 Opt. Commun. 430 151 DOI: 10.1016/j.optcom.2018.08.023
[5]
Grier D G 2003 Nature 424 810 DOI: 10.1038/nature01935
[6]
Zhu L, Guo Z Y, Xu Q, Zhang J R, Zhang A J, Wang W, Liu Y, Li Y, Wang X S, Qu S L 2015 Opt. Commun. 354 34 DOI: 10.1016/j.optcom.2015.05.062
[7]
Liu C X, Guo Z Y, Li Y, Wang X S, Qu S L 2015 J. Opt. 17 035402 DOI: 10.1088/2040-8978/17/3/035402
[8]
Inoue R, Kanai N, Yonehara T, Miyamoto Y, Koashi M, Kozuma M 2006 Phys. Rev. A 74 053809 DOI: 10.1103/PhysRevA.74.053809
[9]
Guo Z Y, Qu S L, Sun Z H, Liu S T 2008 Chin. Phys. B 17 4199 DOI: 10.1088/1674-1056/17/11/040
[10]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photon. 6 488 DOI: 10.1038/nphoton.2012.138
[11]
Wang Z K, Dedo M I, Guo K, Zhou K Y, Shen F, Sun Y X, Liu S T, Guo Z Y 2019 IEEE Photon. J. 11 2916207 DOI: 10.1109/JPHOT.2019.2916207
[12]
Dedo M I, Wang Z K, Guo K, Sun Y X, Shen F, Zhou H P, Gao J, Sun R, Ding Z Z, Guo Z Y 2019 Appl. Sci. 9 2269 DOI: 10.3390/app9112269
[13]
Guo Z Y, Wang Z K, Dedo M I, Guo K 2018 IEEE Photon. J. 10 1 DOI: 10.1109/JPHOT.2018.2859807
[14]
Wang Z K, Guo Z Y 2019 IEEE Access 7 163633 DOI: 10.1109/Access.6287639
[15]
Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545 DOI: 10.1126/science.1237861
[16]
Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203 in Chinese DOI: 10.7498/aps.67.20180325
[17]
Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 in Chinese DOI: 10.7498/aps.61.064210
[18]
Ou J, Jiang Y S, Li F, Liu L 2011 Acta Phys. Sin. 60 114203 in Chinese DOI: 10.7498/aps.60.114203
[19]
Li W, Dai S J, Ma Q Y, Guo G P, Ding H P 2018 Chin. Phys. B 27 024301 DOI: 10.1088/1674-1056/27/2/024301
[20]
Ji Z Y, Zhou G Q 2017 Chin. Phys. B 26 094202 DOI: 10.1088/1674-1056/26/9/094202
[21]
Cheng K, Liu P S, Lu B D 2008 Chin. Phys. B 17 1743 DOI: 10.1088/1674-1056/17/5/034
[22]
Shen F, Mu J N, Guo K, Guo Z Y 2019 IEEE T. Antenn. Propag. 67 5763 DOI: 10.1109/TAP.8
[23]
Yin Z Y, Zheng Q, Guo K, Guo Z Y 2019 Appl. Sci. 9 2949 DOI: 10.3390/app9152949
[24]
Yang Y, Guo K, Shen F, Gong Y B, Guo Z Y 2019 IEEE Access 7 138541 DOI: 10.1109/Access.6287639
[25]
Nye J F, Berry M V 1974 Proc. Soc. A: Math. Phys. 336 165 DOI: 10.1098/rspa.1974.0012
[26]
Jimenez N, Romerogarcía V, Pico R, Cebrecos A, Sanchezmorcillo V J, Garciaraffi L M, Sanchezperez J V, Staliunas K 2014 Europhys. Lett. 106 24005 DOI: 10.1209/0295-5075/106/24005
[27]
Lekner J 2006 J. Acoust. Soc. Am. 120 3475 DOI: 10.1121/1.2360420
[28]
Guo Z Y, Liu H J, Zhou H, Zhou K Y, Wang X M, Shen F, Gong Y B, Gao J, Liu S T, Guo K 2019 Phys. Rev. E 100 053315 DOI: 10.1103/PhysRevE.100.053315
[29]
Zhou H P, Li J J, Guo K, Guo Z Y 2019 J. Acoust. Soc. Am. 146 4237 DOI: 10.1121/1.5135302
[30]
Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601 DOI: 10.1103/PhysRevE.84.065601
[31]
Marston P L 2009 J. Acoust. Soc. Am. 125 3539 DOI: 10.1121/1.3119625
[32]
Hong Z Y, Yin J B, Zhai W, Yan N N, Wang W L, Zhang J, Drinkwater B W 2017 Sci. Rep. 7 7093 DOI: 10.1038/s41598-017-07477-1
[33]
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y C, Hannarose W, Huang T J 2016 Nat. Commun. 7 11085 DOI: 10.1038/ncomms11085
[34]
Baresch D, Thomas J, Marchiano R 2016 Phys. Rev. Lett. 116 024301 DOI: 10.1103/PhysRevLett.116.024301
[35]
Wu J R 1991 J. Acoust. Soc. Am. 89 2140 DOI: 10.1121/1.400907
[36]
Brunet T, Thomas J, Marchiano R 2010 Phys. Rev. Lett. 105 034301 DOI: 10.1103/PhysRevLett.105.034301
[37]
Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. USA 114 7250 DOI: 10.1073/pnas.1704450114
[38]
Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257 DOI: 10.1002/adma.201800257
[39]
Hefner B T, Marston P L 1999 J. Acoust. Soc. Am. 106 3313 DOI: 10.1121/1.428184
[40]
VolkeSepúlveda K, Santillan A O, Boullosa R R 2008 Phys. Rev. Lett. 100 024302 DOI: 10.1103/PhysRevLett.100.024302
[41]
Demore C E M, Yang Z Y, Volovick A, Cochran S, Macdonald M P, Spalding G C 2012 Phys. Rev. Lett. 108 194301 DOI: 10.1103/PhysRevLett.108.194301
[42]
Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R, Zhu X F 2019 Nat. Commun. 10 3411 DOI: 10.1038/s41467-019-11430-3
[43]
Shen Y X, Peng Y G, Zhao D G, Chen X C, Zhu J, Zhu X F 2019 Phy. Rev. Lett. 122 094501 DOI: 10.1103/PhysRevLett.122.094501
[44]
Shen Y X, Zhu X F, Cai F Y, Ma T, Li F, Xia X X, Li Y C, Wang C Z, Zheng H R 2019 Phys. Rev. Appl. 11 034009 DOI: 10.1103/PhysRevApplied.11.034009
[45]
Tang H C, Chen Z S, Tang N, Li S F, Shen Y X, Peng Y G, Zhu X F, Zang J F 2018 Adv. Funct. Mater. 28 1801127 DOI: 10.1002/adfm.v28.36
[46]
Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731 DOI: 10.1038/ncomms11731
[47]
Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368 DOI: 10.1038/ncomms13368
[48]
Peng Y G, Li Y, Shen Y X, Geng Z G, Zhu J, Qiu C W, Zhu X F 2019 Phys. Rev. Research 1 033149 DOI: 10.1103/PhysRevResearch.1.033149
[49]
Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301 DOI: 10.1103/PhysRevLett.117.034301
[50]
Ye L P, Qiu C Y, Lu J Y, Tang K, Jia H, Ke M Z, Peng S S, Liu Z Y 2016 AIP Adv. 6 085007 DOI: 10.1063/1.4961062
[51]
Esfahlani H, Lissek H, Mosig J R 2017 Phys. Rev. B 95 024312 DOI: 10.1103/PhysRevB.95.024312
[52]
Gspan S, Meyer A, Bernet S, Ritschmarte M 2004 J. Acoust. Soc. Am. 115 1142 DOI: 10.1121/1.1643367
[53]
Naify C J, Rohde C A, Martin T P, Nicholas M, Guild M D, Orris G J 2016 Appl. Phys. Lett. 108 223503 DOI: 10.1063/1.4953075
[54]
Rohde C A, Naify C J, Guild M D, Martin T P, Rogers J S, Calvo D C, Orris G J 2017 International Society for Optics and Photonics April 24–27, 2017 Prague, Czech Republic 10170 DOI: 10.1117/12.2260164
[55]
Jimenez N, Pico R, Sanchezmorcillo V J, Romerogarcía V, Garcíaraffi L M, taliunas K 2016 Phys. Rev. E 94 053004 DOI: 10.1103/PhysRevE.94.053004
[56]
Jiang X, Zhao J J, Liu S L, Liang B, Zou X Y, Yang J, Qiu C W, Cheng C J 2016 Appl. Phys. Lett. 108 203501 DOI: 10.1063/1.4949337
[57]
Wang Z X, Zhang N, Yuan X C 2011 Opt. Express 19 482 DOI: 10.1364/OE.19.000482
[58]
Leach J, Courtial J, Skeldon K D, S. M. Brnett S M, Frankearnold S, Padgett M J 2004 Phys. Rev. Lett. 92 013601 DOI: 10.1103/PhysRevLett.92.013601
[59]
Sztul H, Alfano R R 2006 Opt. Lett. 31 999 DOI: 10.1364/OL.31.000999
[60]
Berkhout G C G, Beijersbergen M W 2008 Phys. Rev. Lett. 101 100801 DOI: 10.1103/PhysRevLett.101.100801
[61]
Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. USA 114 7250 DOI: 10.1073/pnas.1704450114
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[3] Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2021, 30(4): 044302.
[4] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[5] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[6] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[7] Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
Wen Li(李雯), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平). Chin. Phys. B, 2018, 27(2): 024301.
[8] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
[9] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke(程科), Liu Pu-Sheng(刘普生), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(5): 1743-1751.
[10] Topological susceptibility from overlap fermion
Ying He-Ping (应和平), Zhang Jian-Bo (张剑波). Chin. Phys. B, 2003, 12(12): 1374-1377.
No Suggested Reading articles found!