Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084204    DOI: 10.1088/1674-1056/ab9441
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator

Shuai Huang(黄帅)1,2, Qing Wang(王庆)1,2, Meng Zhang(张濛)1,2, Chaoyong Chen(陈朝勇)1,2, Kaixin Wang(王凯鑫)1,2, Mingwei Gao(高明伟)1,2, Chunqing Gao(高春清)1,2
1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
2 Key Laboratory of Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract  A novel Er:YAG laser system operating at 1645 nm with high pulse-repetition-frequency (PRF) of kHz level is demonstrated. A ring cavity with double gain medium end-pumped by two fiber lasers is utilized to obtain high pulse energy. A novel ‘triple-reflection’ configuration on a piezoelectric actuator (PZT) is adopted to achieve high-repetition-rate at 3-kHz operation with the ramp-fire locking method. Single frequency pulses with maximum average power of 18.3 W at 3 kHz are obtained, and the pulse duration time is 318 ns. The full line width at half maximum (FWHM) of the pulses measured by the heterodyne technique is 1.71 MHz at 3 kHz. To the best of our knowledge, this is the highest PRF single-frequency laser pulses achieved based Er:YAG gain medium.
Keywords:  Er:YAG      injection-seeded      single-frequency      high pulse-repetition-frequency  
Received:  08 March 2020      Revised:  16 April 2020      Accepted manuscript online: 
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Gd (Q-switching)  
  42.60.By (Design of specific laser systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405203) and the National Natural Science Foundation of China (Grant No. 61627821).
Corresponding Authors:  Qing Wang     E-mail:  qingwang@bit.edu.cn

Cite this article: 

Shuai Huang(黄帅), Qing Wang(王庆), Meng Zhang(张濛), Chaoyong Chen(陈朝勇), Kaixin Wang(王凯鑫), Mingwei Gao(高明伟), Chunqing Gao(高春清) A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator 2020 Chin. Phys. B 29 084204

[1] Malm A I R, Hartman R and Stoneman R C 2004 Opt. Soc. Am. 2004 356
[2] Mizutani K, Ishii S, Aoki M, Iwai H, Oysuka R, Fukuoka H, Isikawa T and Sato A 2018 Opt. Lett 43 202
[3] Hannon S, Barr K, Novotny J, Bass J, Oliver A and Anderson M 2008 European Wind Energy Conference and Exhibition, March, 2008, Brussels, Belgium, pp. 1-7
[4] Henderson S W, Hale C P, Magee J R, Kavaya M J and Huffaker A V 1991 Opt. Lett. 16 773
[5] Cao X Z, Li P L, Wang Z Y and Liu Q 2019 Chin. Phys. Lett. 36 124201
[6] Henderson S W, Hale C P, Magee J R, Kavaya M J and Huffaker A V 1991 Opt. Lett. 16 773
[7] Koch G J, Deyst J P and Storm M E 1993 Opt. Lett. 18 1235
[8] Yu J, Singh U N, Barnes N P and Petros M 1998 Opt. Lett. 23 780
[9] Setzler S D, Francis M P, Young Y E, Konves J R and Chicklis E P 2005 IEEE J. Quantum Electron. 11 645
[10] Kim J, Mackenzie J, Sahu J and Clarkson W, 20107 th EMRS DTC Technical Conference, 2010, Edinburgh, UK, p. B1
[11] Wang R, Ye Q, Zheng Y, Gao M W and Gao C Q 2014 Proc. SPIE 8959 89590F
[12] Yao B Q, Deng Y, Dai T Y, Duan X M, Jun Y L and Wang Y Z 2015 Quantum Electron. 45 709
[13] Zhang Y X, Gao C Q, Wang Q, Na Q X, Gao M W, Zhang M and Huang S 2019 Laser Phys. Lett. 16 115002
[14] Shi Y, Gao C Q, Wang S, Li S H, Song R, Zhang M, Gao M W and Wang Q 2019 Opt. Express 27 2671
[15] Li S H, Wang Q, Song R, Hou F F, Gao M W and Gao C Q 2020 Chin. Opt. Lett. 18 031401
[16] Na Q X Gao C Q, Wang Q, Zhang Y X, Gao M W, Zhang M and Wang Y J 2017 Laser Phys. Lett 14 085002
[17] Kim J W, Shen D Y, Sahu J K and Clarkson W A 2009 IEEE J. Sel. Top. Quantum Electron. 15 361
[18] Kurtz R M, Pradhan R D, Tun N, Aye T M, Savant G D, Jannson T P and DeshazerLG 2005 IEEE J. Quantum Electron. 11 578
[1] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[2] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[3] Fe: ZnSe laser pumped by a 2.93-μm Cr, Er: YAG laser
Ying-Yi Li(李英一), Tong-Yu Dai(戴通宇), Xiao-Ming Duan(段小明), Chun-Fa Guo(郭春发), Li-Wei Xu(徐丽伟), You-Lun Ju(鞠有伦). Chin. Phys. B, 2019, 28(6): 064203.
[4] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[5] Suppressing the preferential σ-polarization oscillation in a high power Nd:YVO4 laser with wedge laser crystal
Zheng Yao-Hui (郑耀辉), Zhou Hai-Jun (周海军), Wang Ya-Jun (王雅君), Wu Zhi-Qiang (邬志强). Chin. Phys. B, 2013, 22(8): 084207.
[6] 330-W single-frequency retrievable multi-tone monolithic fiber amplifier
Wang Xiao-Lin (王小林), Zhou Pu (周朴), Leng Jin-Yong (冷进勇), Du Wen-Bo (杜文博), Xu Xiao-Jun (许晓军). Chin. Phys. B, 2013, 22(4): 044205.
[7] Low noise, continuous-wave single-frequency 1.5-μm laser generated by a singly resonant optical parametric oscillator
Liu Jian-Li(刘建丽), Liu Qin(刘勤), Li Hong(李宏), Li Peng(李鹏), and Zhang Kuan-Shou(张宽收) . Chin. Phys. B, 2011, 20(11): 114215.
No Suggested Reading articles found!