Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 025204    DOI: 10.1088/1674-1056/ab6719
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The E×B drift instability in Hall thruster using 1D PIC/MCC simulation

Zahra Asadi1, Mehdi Sharifian1, Mojtaba Hashemzadeh2, Mahmood Borhani Zarandi1, Hamidreza Ghomi Marzdashti3
1 Physics Department, Yazd University, Safaiyeh, Yazd, Iran;
2 Faculty of Physics, Shahrood University of Technology, Shahrood, Iran;
3 Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
Abstract  The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell (PIC) simulation method. By using the dispersion relation, it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics. The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field. The ion mass does not affect the instability wavelength. Furthermore, the results confirm that there is an instability with short wavelength and high frequency. Finally, it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction. Also for light mass ion, the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.
Keywords:  plasma      Hall thruster      particle in cell (PIC) simulation      drift instability  
Received:  15 October 2019      Revised:  27 December 2019      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.75.Di (Ion and plasma propulsion)  
  52.25.Dg (Plasma kinetic equations)  
  52.35.Ra (Plasma turbulence)  
Corresponding Authors:  Mehdi Sharifian     E-mail:  mehdi.sharifian@yazd.ac.ir

Cite this article: 

Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti The E×B drift instability in Hall thruster using 1D PIC/MCC simulation 2020 Chin. Phys. B 29 025204

[1] Goebel, D M and Katz I 2008 Fundam. Electric Propulsion: Ion Hall Thrusters (New York: John Wiley & Sons)
[2] Boeuf J P 2017 J. Appl. Phys. 121 011101
[3] Kim V 1998 J. Propul. Power 14 736
[4] Macdonald M and Badescu V 2014 The international handbook of space technology (Berlin: Springer)
[5] Wu Z W, Yu D R and Wang X G 2006 Vacuum 80 1376
[6] Brieda L and Keidar M 2012 J. Appl. Phys. 111 123302
[7] Taccogna F, Longo S and Capitelli M 2004 Vacuum 73 89
[8] Ding Y, et al. 2017 J. Phys. D: Appl. Phys. 50 145203
[9] Liu H, et al. 2010 J. Phys. D: Appl. Phys. 43 165202
[10] Boniface C, et al. 2006 Appl. Phys. Lett. 89 161503
[11] Meezan, N B, W A Hargus Jr and Cappelli M A 2001 Phys. Rev. E 63 026410
[12] Taccogna F, et al. 2009 Appl. Phys. Lett. 94 251502
[13] Raitses Y, et al. 2011 IEEE. T. Plasma. Sci. 39 995
[14] Keidar M and Beilis I I 2006 IEEE. T. Plasma. Sci. 34 804
[15] Lafleur T and Chabert P 2017 Plasma. Sources. Sci. T. 27 015003
[16] Ducrocq A, et al. 2006 Phys. Plasmas 13 102111
[17] Gary S P and Sanderson J 1970 J. Plasma. Phys. 4 739
[18] Gary S P 1970 J. Plasma. Phys. 4 753
[19] Litvak A A, Raitses Y and Fisch N J 2004 Phys. Plasmas 11 1701
[20] McDonald M S, et al. 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
[21] Lafleur T, Baalrud S and Chabert P 2016 Phys. Plasmas 23 053502
[22] Choueiri E 2001 Phys. Plasmas 8 1411
[23] Cavalier J, et al. 2013 Phys. Plasmas 20 082107
[24] Lampe M, et al. 1972 Phys. Fluids 15 662
[25] Mangeney A, et al. 2002 J. Comput. Phys. 179 495
[26] Hockney R W and Eastwood J W 1988 Computer simulation using particles (New York: CRC Press)
[27] Birdsall C K and Langdon A B 2004 Plasma physics via computer simulation (New York: CRC Press)
[28] Tskhakaya D, et al. 2007 Contrib. Plasma. Phys. 47 563
[29] Asadi Z, et al. 2019 Front. Phys. 7 140
[30] Napolitano M 1985 Commun. Applied Numerical Methods 1 11
[31] Escobar D and Ahedo E 2014 IEEE. Trans. Plasma Sci. 43 149
[32] Boeuf J and Garrigues L 2018 Phys. Plasmas 25 061204
[33] Smith A W and Cappelli M A 2009 Phys. Plasmas 16 073504
[34] Che H, et al. 2009 Phys. Rev. Lett. 102 145004
[35] Che H, et al. 2010 Geophys. Res. Lett. 37 L11105
[36] Jain N, Umeda T and Yoon P H 2011 Plasma. Phys. Contr. F 53 025010
[37] Vivien C, et al. 2017 Plasma. Sources. Sci. T. 26 034001
[38] Taccogna F, et al. 2019 Plasma. Sources. Sci. T 28 064002
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[6] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[9] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[10] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[11] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[12] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[13] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[14] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[15] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
No Suggested Reading articles found!