Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010704    DOI: 10.1088/1674-1056/ab5ef6
GENERAL Prev   Next  

Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm

Chun-Yan Sun(孙春艳)1,2,3, Yuan Cao(曹渊)1,2, Jia-Jin Chen(陈家金)1, Jing-Jing Wang(王静静)1,2, Gang Cheng(程刚)1,2, Gui-Shi Wang(王贵师)1, Xiao-Ming Gao(高晓明)1
1 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230031, China;
3 Huainan Normal University, Huainan 232001, China
Abstract  N2O is a significant atmospheric greenhouse gas that contributes to global warming and climate change. In this work, the high sensitivity detection of atmospheric N2O is achieved using wavelength modulation spectroscopy (WMS) with an inter-band cascade laser operating around 3.939 μm. A LabVIEW-based software signal generator and software lock-in amplifiers are designed to simplify the system. In order to eliminate the interference from water vapor, the detection was performed at a pressure of 0.1 atm (1 atm=1.01325×105 Pa) and a drying tube was added to the system. To improve the system performance for long term detection, a novel frequency locking method and 2f/1f calibration-free method were employed to lock the laser frequency and calibrate the power fluctuations, respectively. The Allan deviation analysis of the results indicates a detection limit of ~20 ppb (1 ppb=1.81205 μg/m3) for a 1 s integration time, and the optimal detection limit is ~5 ppb for a 40-s integration time.
Keywords:  wavelength modulation spectroscopy      inter-band cascade laser      frequency locking      nitrous oxide (N2O)  
Received:  10 August 2019      Revised:  22 October 2019      Accepted manuscript online: 
PACS:  07.88.+y (Instruments for environmental pollution measurements)  
  42.87.-d (Optical testing techniques)  
  42.72.Bj (Visible and ultraviolet sources)  
  33.20.Lg (Ultraviolet spectra)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC0213304, 2017YFC0209703, and 2016TFC0303900).
Corresponding Authors:  Gui-Shi Wang     E-mail:  gswang@aiofm.ac.cn

Cite this article: 

Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明) Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm 2020 Chin. Phys. B 29 010704

[1] Ravishankara A R, Daniel J S and Portmann R W 2009 Science 326 123
[2] Stocker T, Qin D H, Plattner K, et al. 2013 Climate Change 2013: The Physical Science Basis [M] (Cambridge: Cambridge University Press) pp. 128-130
[3] Castillo P C, Sydoryk I, Gross B and Moshary F 2013 Chem. Biological Sensing Technol. 8718 87180J
[4] Baggs E M, Smales C L and Bateman E J 2010 Biol. & Fertility Soils 46 793
[5] Zhang J and Han X 2008 Atmos. Environment 42 291
[6] Nelson D D, McManus B, Urbanski S, Herndon S and Zahniser M S 2004 Spectrochim. Acta Part. A: Mol. Biomolecular Spectroscopy 60 3325
[7] Wright S, Duxbury G and Langford N 2006 Appl. Phys. B 85 243
[8] Yu Y, Sanchez N P, Griffin R J and Tittel F K 2016 Opt. Express. 24 10391
[9] Cui X, Dong F, Zhang Z, Sun P, Xia H, Fertein E and Chen W 2018 Atmos. Environment 189 125
[10] Dong L, Li C, Sanchez N P, Gluszek A K, Griffin R J and Tittel F K 2016 Appl. Phys. Lett. 108 011106
[11] Li C, Dong L, Zheng C and Tittel F K 2016 Sens. Actuators B: Chemical 232 188
[12] Ma Y, Lewicki R and Razeghi M 2013 Opt. Express 21 1008
[13] Yanagawa T, Saito S and Yamamoto Y 1984 Appl. Phys. Lett. 45 826
[14] Dong L, Yin W, Ma W and Jia S 2007 Meas. Sci. Technol. 18 1447
[15] Gong P, Xie L, Qi X Q and Wang R 2015 IEEE Photon. Technol. Lett. 27 545
[16] Wang Q, Wang Z and Ren W 2017 Meas. Sci. Technol. 28 065102
[17] Wang G, Mei J, Tian X, Liu K, Tan T, Chen W and Gao X 2019 Opt. Express 27 4878
[18] Wang G S, Yi H M and Cai T D 2012 Acta Phys. Sin. 61 120701 (in Chinese)
[19] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B and Hanson R K 2014 Appl. Opt. 53 356
[20] Sun K, Chao X and Sur R 2013 Meas. Sci. Technol. 24 125203
[21] Reid J and Labrie D 1981 Appl. Phys. B 26 203
[22] Hill C, Gordon I E, Kochanova R V, et al. 2016 J. Quantum Spectrosc. & Radiat. Trans. 177 4
[1] Geometric structure of N2Oq+ (q = 5, 6) studied by Ne8+ ion-induced Coulomb explosion imaging
Xi Zhao(赵曦), Xu Shan(单旭), Xiaolong Zhu(朱小龙), Lei Chen(陈磊), Zhenjie Shen(沈镇捷), Wentian Feng(冯文天), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Ruitian Zhang(张瑞田), Yong Gao(高永), Zhongkui Huang(黄忠魁), Shaofeng Zhang(张少锋), Xinwen Ma(马新文), and Xiangjun Chen(陈向军). Chin. Phys. B, 2021, 30(11): 113302.
[2] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[3] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[4] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[5] Wavelength modulation spectroscopy for measurements of gas parameters in combustion field
Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎). Chin. Phys. B, 2017, 26(6): 064207.
[6] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[7] Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰). Chin. Phys. B, 2016, 25(11): 114202.
[8] Frequency-locking and threshold current-lowering effects of a quantum cascade laser and an application in gas detection field
Chen Wei-Gen (陈伟根), Wan Fu (万福), Zou Jing-Xin (邹经鑫), Gu Zhao-Liang (顾朝亮), Zhou Qu (周渠). Chin. Phys. B, 2015, 24(2): 024206.
[9] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[10] PRECISE MEASUREMENT OF DENSITY-DEPENDENT SHIFT BY WAVELENGTH MODULATION REFLECTION SPECTROSCOPY
Xiao Lian-tuan (肖连团), Zhao Jian-ming (赵建明), Li Chang-yong (李昌勇), Jia Suo-tang (贾锁堂), Zhou Guo-sheng (周国生). Chin. Phys. B, 2001, 10(8): 716-719.
No Suggested Reading articles found!