|
|
Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse |
Le-Le Song(宋乐乐)1,2,3, Ya-Nan Sun(孙亚楠)1,3, Yan-Hui Wang(王艳辉)4, Xiao-Chun Wang(王晓春)1,3, Lan-Hai He(赫兰海)1,3, Si-Zuo Luo(罗嗣佐)1,3, Wen-Hui Hu(胡文惠)1,3, Qiu-Nan Tong(佟秋男)1,3, Da-Jun Ding(丁大军)1,3, Fu-Chun Liu(刘福春)1,3 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Institute of Chemical Technology, Changchun 132022, China;
3 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
4 College of Electronic Science and Engineering, State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, China |
|
|
Abstract In this work, we mainly investigate the NH3 molecular multiphoton ionization process by using the photoelectron velocity map imaging technique. Under the condition of femtosecond laser (wavelength at 800 nm), the photoelectron images are detected. The channel switching and above-threshold ionization (ATI) effect are also confirmed. The kinetic energy spectrum (KES) and the photoelectron angular distributions (PADs) are obtained through the anti-Abel transformation from the original images, and then three ionization channels are confirmed successfully according to the Freeman resonance effect in a relatively low laser intensity region. In the excitation process, the intermediate resonance Rydberg states are C~1A'1 (6+2 photons process), B~1E" (6+2 photons process) and C~1A'1 (7+2 photons process), respectively. At the same time, we also find that the photoelectron angular distributions are independent of laser intensity. In addition, the electrons produced by different processes interfere with each other and they can produce a spider-like structure. We also find ac-Stark movement according to the Stark-shift-induced resonance effect when the laser intensity is relatively high.
|
Received: 17 December 2018
Revised: 02 April 2019
Accepted manuscript online:
|
PACS:
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
33.60.+q
|
(Photoelectron spectra )
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574116, 11534004, 10704028, and 11474123). |
Corresponding Authors:
Fu-Chun Liu
E-mail: lfc@jlu.edu.cn
|
Cite this article:
Le-Le Song(宋乐乐), Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Qiu-Nan Tong(佟秋男), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春) Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse 2019 Chin. Phys. B 28 063201
|
[1] |
Guo L and Han S S 2012 Phys. Rev. A 86 053409
|
[2] |
Li M, Liu Y, Liu H, Yang Y, Yuan J, Liu X, Deng Y, Wu C and Gong Q 2012 Phys. Rev. A 85 13414
|
[3] |
Wiehle R, Witzel B, Helm H and Cormier E 2003 Phys. Rev. A 67 063405
|
[4] |
Kumarappan V, Holmegaard L, Martiny C, Madsen C B, Kjeldsen T K, Viftrup S S, Madsen L B and Stapelfeldt H 2008 Phys. Rev. Lett. 100 093006
|
[5] |
Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G and Walther H 2002 Adv. Atom. Mol. Opt. Phys. 48 35
|
[6] |
Ito Y, Wang C, Le A T, Okunishi M, Ding D, Lin C D and Ueda K 2016 Struct. Dyn. 3 034303
|
[7] |
Wang C, Tian Y, Luo S, Roeterdink W G, Yang Y, Ding D, Okunishi M, Prümper G, Shimada K Ueda K and Zhu. R 2014 Phys. Rev. A 90 023405
|
[8] |
Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D and Geusic M E 1987 Phys. Rev. Lett. 59 1092
|
[9] |
Gibson G N, Freeman R R and Mcilrath T J 1992 Phys. Rev. Lett. 69 1904
|
[10] |
Potvliege R M and Vucic S 2006 Phys. Rev. A 74 023412
|
[11] |
Mevel E, Breger P, Trainham R, Petite G, Agostini P, Chambaret J P, Migus A and Antonetti A 1992 J. Phys. B: At. Mol. Opt. Phys. 25 L401
|
[12] |
Conaway W E, Morrison R J S and Zare R N 1985 Chem. Phys. Lett. 113 429
|
[13] |
Urbanek J, Dahmen A, Torresalacan J, Königshoven P, Lindner J and Vöhringer P 2012 J. Phys. Chem. B 116 2223
|
[14] |
Wells K L, Perriam G and Stavros V G 2009 J. Chem. Phys. 130 074308
|
[15] |
Kang H, Dedonder-Lardeux C, Jouvet C, Grégoire G, Desfrançois C, Schermann J P, Barat M and Fayeton J A 2005 J. Phys. Chem. A 109 2417
|
[16] |
Yu H, Evans N L, Chatterley A S, Roberts G M, Stavros V G and Ullrich S 2014 J. Phys. Chem. A 118 9438
|
[17] |
Nieman G C and Colson S D 1978 J. Chem. Phys. 68 5656
|
[18] |
Nieman G C and Colson S D 1979 J. Chem. Phys. 71 571
|
[19] |
Glownia J H, Riley S J, Colson S D and Nieman G C 1980 J. Chem. Phys. 72 5998
|
[20] |
Ashfold M N R, Bayley J M and Dixon R N 1984 Chem. Phys. 84 35
|
[21] |
Xie J, Sha G, Zhang X and Zhang C 1986 Chem. Phys. Lett. 124 99
|
[22] |
Xie J, Jiang B, Li G, Yang S, Xu J, Sha G, Xu D, Lou N and Zhang C 2000 Faraday Discuss 115 127
|
[23] |
Dribinski V, Ossadtchi A, Mandelshtam V A and Reisler H 2002 Rev. Sci. Instrum. 73 2634
|
[24] |
Luo S, Zhu R, He L, Hu W, Li X, Ma P, Wang C, Liu F, Roeterdink W G, Stolte S and Ding D 2015 Phys. Rev. A 91 053408
|
[25] |
Hüter O and Temps F 2017 Rev. Sci. Instrum. 88 046101
|
[26] |
Yu J, Hu W, Li X, Ma P, He L, Liu F, Wang C, Luo S and Ding D 2017 J. Phys. B: At. Mol. Opt. Phys. 50 235602
|
[27] |
Liu F C, Jin M X, Gao X and Ding D J 2006 Chin. Phys. Lett. 23 344
|
[28] |
Song L L, Wang Y H, Wang X C, Sun H T, He L H, Luo S Z, Hu W H, Li D X, Zhu W H, Sun Y N, Ding D J and Liu F C 2019 Chin. Phys. B 28 023101
|
[29] |
Huismans Y, et al. 2011 Science 331 61
|
[30] |
Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M and Kapteyn H C 2012 Phys. Rev. Lett. 109 073004
|
[31] |
Meckel M, Staudte A, Patchkovskii S, Villeneuve D, Corkum P, Dörner R and Spanner M 2014 Nat. Phys. 10 594
|
[32] |
Arbó D G, Lemell C, Nagele S, Camus N, Fechner L, Krupp A, Pfeifer T, López S D, Moshammer R and Burgdörfer J 2015 Phys. Rev. A 92 023402
|
[33] |
Li M, Zhang P, Luo S, Zhou Y, Zhang Q, Lan P and Lu P 2015 Phys. Rev. A 92 063404
|
[34] |
Shao Y, Li M, Liu M M, Sun X, Xie X, Wang P, Deng Y, Wu C, Gong Q and Liu Y 2015 Phys. Rev. A 92 013415
|
[35] |
Luo S, Hu W, Yu J, Zhu R, He L, Li X, Ma P, Wang C, Liu F and Roeterdink W G 2017 J. Phys. Chem. A 121 777
|
[36] |
Gibson G, Luk T S and Rhodes C K 1990 Phys. Rev. A 41 5049
|
[37] |
Rudenko A, Zrost K, Schröter C D, Jesus V L B D, Feuerstein B, Moshammer R and Ullrich J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|