|
|
Photo-transmutation based on resonance γ-ray source |
Guang-Yong Fu(付光永)1,2, Yong-Le Dang(党永乐)1,2, Fu-Long Liu(刘伏龙)1,2, Di Wu(吴笛)2, Chuang-Ye He(贺创业)2, Nai-Yan Wang(王乃彦)1,2 |
1 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 China Institute of Atomic Energy, Beijing 102413, China |
|
|
Abstract High intensity γ-ray source can be obtained through resonance reaction induced by protons. In this work, the possibility of using such high intensity MeV-range γ-ray source to transmute nuclear waste is investigated through Mont Carlo simulation. 197Au(γ,n)196Au experiment is performed to obtain the transmutation rate and compared with the simulation result. If the current of the proton beam is 10 mA at the resonance energy of 441 keV, with the γ photons emitted from 7Li(p, γ)8Be, then the corresponding transmutation yield for 129I in 2π direction can reach 9.4×109 per hour. The result is compared with that of LCS γ-ray source.
|
Received: 28 March 2019
Accepted manuscript online:
|
PACS:
|
07.85.Fv
|
(X- and γ-ray sources, mirrors, gratings, and detectors)
|
|
25.20.-x
|
(Photonuclear reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11655003). |
Corresponding Authors:
Nai-Yan Wang
E-mail: wangny@bnu.edu.cn
|
Cite this article:
Guang-Yong Fu(付光永), Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Di Wu(吴笛), Chuang-Ye He(贺创业), Nai-Yan Wang(王乃彦) Photo-transmutation based on resonance γ-ray source 2019 Chin. Phys. B 28 060707
|
[1] |
IAEA technical reports series, 2004, No. 435, Implications of Partitioning and Transmutation in Radioactive Waste Management (Vienna, IAEA) p. 101
|
[2] |
Magill J, Schwoerer H, Ewald F, Galy J, Schenkel R and Sauerbrey R 2003 Appl. Phys. B 77 387
|
[3] |
Ewald F, Schwoerer H, Dusterer S, Sauerbrey R, Magill J, Galy J, Schenkel R, Karsch S, Habs D and Witte K 2003 Plasma Phys. Control. Fusion 45 A83
|
[4] |
Liesfeld B, Amthor K U, Ewald F, Schwoerer H, Magill J, Galy J, Lander G and Sauerbrey R 2004 Appl. Phys. B 79 1047
|
[5] |
Ledingham K W D, Magill J, McKenna P, Yang J, Galy J, Schenkel R, Rebizant J, McCanny T, Shimizu S, Robson L, Singhal R P, Wei M S, Mangles S P D, Nilson P, Krushelnick K, Clarke R J and Norreys P A 2013 Proceedings of SRF, Paris, France
|
[6] |
Rahman A K Md L, Kuwabara S, Kato K, Arima H, Shigyo N, Ishibashi K, Nakajima J H K, Goto T and Uematsu M 2008 Nuclear Science and Engineering 160 363
|
[7] |
Irani E, Sadighi S K, Zare S and Sadighi-Bonabi R 2012 Energy Convers. Manag. 64 466
|
[8] |
Wang X L, Xu Z Y, Luo W, Lu H Y, Zhu Z C and Yan X Q 2017 Physics of Plasmas 24 093105
|
[9] |
Irani E, Omidvar H and Sadighi-Bonabi R 2014 Energy Convers. Manag. 77 558
|
[10] |
Sadighi-Bonabi R, Irani E, Safaie B, Imani Kh, Silatani M and Zare S 2010 Energy Convers. Manag. 51 636
|
[11] |
Sadighi S K and Sadighi-Bonabi R 2010 Laser and Particle Beams 28 269
|
[12] |
Takashima R, Hasegawa S, Nemoto K and Kato K 2005 Appl. Phys. Lett. 86 011501
|
[13] |
Wang X L, Tan Z Y, Luo W, Zhu Z C, Wang X D and Song Y M 2016 Laser and Particle Beams 34 433
|
[14] |
Dazhi L I, Imasaki K and Aoki M 2002 J. Nucl. Sci. Technol. 39 1247
|
[15] |
Sadighi-Bonabi R and Kokabee O 2006 Chin. Phys. Lett. 23 1434
|
[16] |
Zhu Z C, Luo W, Li Z C, Song Y M, Wang X D, Wang X L and Fan G T 2016 Ann. Nucl. Energy 89 109
|
[17] |
Chen J, Xu W, Wang H, Guo W, Ma Y, Cai X, Lu G, Xu Y, Pan Q and Fan G 2009 Nucl. Instrum. Methods Phys. Res., Sect. A 599 118
|
[18] |
Chen J G, Xu W, Wang H W, Guo W, Ma Y G, Cai X Z, Lu G C, Xu Y, Pan Q Y, Yuan R Y, Xu J Q, Yan Z, Fan G T and Shen W Q 2008 Chin. Phys. C 32 677
|
[19] |
Li D, Imasaki K, Miyamoto S, Amano S and Mochizuki T 2005 J. Nucl. Sci. Technol. 42 259
|
[20] |
Li D, Imasaki K, Horikawa K, Miyamoto S, Amano S and Mochizuki T 2009 J. Nucl. Sci. Technol. 46 831
|
[21] |
Rehman H, Lee J and Kim Y 2017 Ann. Nucl. Energy 105 150
|
[22] |
Biarrotte J L 2013 Proceedings of SRF, Paris, France
|
[23] |
https://aries.web.cern.ch/content/iphi
|
[24] |
http://soreq.gov.il/mmg/eng/Pages/SARAF-Facility.aspx
|
[25] |
Vernon Smith H, Schneider J D and Sheffield R 2001 Proceedings of the 2001 Particle Accelerator Conference, Chicago, USA, p. 3296
|
[26] |
Kasatov D, Kuznetsov A, Makarov A, Shchudlo I, Sorokin I and Taskaev S 2018 29th Linear Accelerator Conference, Beijing, China, p. 308
|
[27] |
Sugimoto M, Akagi T, Ebisawa T, et al. 2018 29th Linear Accelerator Conference, Beijing, China, p. 308
|
[28] |
http://www.ifmif.org/
|
[29] |
Cho Y S, Song W S and Choi B H 2001 Proceedings of the 2001 Particle Accelerator Conference, Chicago, USA, p. 2503
|
[30] |
http://www.d-pace.com/
|
[31] |
Fowler W A and Laurisen C C 1949 Phys. Rev. 76 314
|
[32] |
Hanna S S and Meyer-Schutzmeister L 1959 Phys. Rev. 115 986
|
[33] |
Dang Y L, Liu F L, Fu G Y, Wu D, Guo B, He C Y and Wang N Y 2019 Chin. Phys. B 28 060706
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|