CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method |
S Mourad1, J El Ghoul1,2, K Omri1, K Khirouni1 |
1 Laboratory of Physics of Materials and Nanomaterials Applied at Environment(LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, 6072 Gabes, Tunisia;
2 Imam Mohammad Ibn Saud Islamic University(IMSIU), College of Sciences, Department of Physics, Riyadh 11623, Saudi Arabia |
|
|
Abstract Pure ZnO and indium-doped ZnO (In-ZO) nanoparticles with concentrations of In ranging from 0 to 5% are synthesized by a sol-gel processing technique. The structural and optical properties of ZnO and In-ZO nanoparticles are characterized by different techniques. The structural study confirms the presence of hexagonal wurtzite phase and indicates the incorporation of In3+ ions at the Zn2+ sites. However, the optical study shows a high absorption in the UV range and an important reflectance in the visible range. The optical band gap of In-ZnO sample varies between 3.16 eV and 3.22 eV. The photoluminescence (PL) analysis reveals that two emission peaks appear:one is located at 381 nm corresponding to the near-band-edge (NBE) and the other is observed in the green region. The aim of this work is to study the effect of indium doping on the structural, morphological, and optical properties of ZnO nanoparticles.
|
Received: 05 November 2018
Revised: 18 February 2019
Accepted manuscript online:
|
PACS:
|
77.55.hf
|
(ZnO)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
81.20.Fw
|
(Sol-gel processing, precipitation)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
Fund: Project supported by the Deanship of Academic Research at Imam Mohamed Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia, (Research Project Nos. 381212 and 1438H). |
Corresponding Authors:
J El Ghoul
E-mail: Jaber.Elghoul@fsg.rnu.tn,ghoultn@yahoo.fr
|
Cite this article:
S Mourad, J El Ghoul, K Omri, K Khirouni Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method 2019 Chin. Phys. B 28 047701
|
[1] |
Goto K, Kawashima T and Tanabe N 2006 Sol. Energy Mater. Sol. Cells 90 3251
|
[2] |
Manoharan C, Pavithra G, DhanapandianS and Dhamodharan P 2015 Spectrochim. Acta Part A 49 1
|
[3] |
Mhlongo G H, Mothudi B M, Hillie K T, Swart H C and Dhlamini M S 2015 Mater. Lett. 119 71
|
[4] |
hen G, Zhao X, Zhang H, Liu F, Wang Y, Wang H, Gao J, Zhao Y, Li W and Tao J 2016 Superlattices and Microstructures 99 175
|
[5] |
El Ghoul J 2015 J. Mater. Sci: Mater. Electron. 27 1
|
[6] |
Yan L, Ong C K and Rao X S 2004 J. Appl. Phys. 96 508
|
[7] |
E Ghoul J 2016 Bull. Mater. Sci. 39 7
|
[8] |
Özgür Ü and Morkoç H 2006 Zinc Oxide Bulk Thin Films Nanostruct. (Elsevier) pp. 1-600
|
[9] |
Razali R, Khorsand Zak A, Majid W H A and Darroudi M 2011 Ceram. Int. 37 3657
|
[10] |
Sharma P, Sreenivas K and Rao K V 2003 J. Appl. Phys. 93 3963
|
[11] |
Movlarooy T and Magn J 2017 Materials 441 139
|
[12] |
Dou Y, Wu F, Mao C, Fang L, Guo S and Zhou M 2015 J. Alloys Compd. 633 408
|
[13] |
Hsu C L, Hsu D X, Hsueh T J, Changand S P and Chang S J 2017 Ceram. Int. 43 5434
|
[14] |
El Mir L, Ben Ayadi Z, Rahmouni H, El Ghoul J, Djessas K and von Bardeleben H J 2009 Thin Solid Films 517 6007
|
[15] |
El Ghoul J, Kraini M and Lemine O M 2015 J. Mater. Sci: Mater. Electron. 26 2614
|
[16] |
Omri K, El Ghoul J, Lemine O M, Bououdina M, Zhang B and El Mir L 2013 Superlattices and Microstructures 60 139
|
[17] |
El Ghoul J, Kraini M and El Mir L 2015 J. Mater. Sci: Mater. Electron. 26 2555
|
[18] |
Hjiri M, El Mir L, Leonardi S G, Pistone A, Mavilia L and Neri G 2014 Sens. Actuators B 196 413
|
[19] |
Ghiloufi I, El Ghoul J, Modwi A and El Mir L 2016 Mater. Sci. Semicond. Process. 42 102
|
[20] |
Hjiri M, Dhahri R, Omri K, El Mir L, Leonardi S G, Donato N and Neri G 2014 Mater. Sci. Semicond. Process. 27 319
|
[21] |
Ameen S, Akhtar M S, Seo H K, Kim Y S and Shin H S 2012 Chem. Eng. J. 187 351
|
[22] |
Dhahri R, Hjiri M, El Mir L, Alamri H, Bonavita A, Iannazzo D, Leonardi S G and Neri G 2017 Adv. Mater. Dev. 2 34
|
[23] |
Menner R, Cemernjak M Paetel S and Wischmann W 2017 Thin Solids Films 633 239
|
[24] |
Slama R, El Ghoul J, Omri K, Houas A, El Mir L and Launay F 2016 J. Mater. Sci: Mater Electron. 27 7939
|
[25] |
Chava R K and Kang M 2017 J. Alloys Compd. 692 67
|
[26] |
Kim S, Kim C, Na J, Oh E, Jeong C and Lim S 2015 J. Sol-Gel Sci. Technol. 74 790
|
[27] |
Zhu B L, Zeng D W, Wu J, Song W L and Xie C S 2003 J. Mater. Sci. Mater. Electron. 14 521
|
[28] |
El Ghoul J, Barthou C and El Mir L 2012 Superlattices and Microstructures 51 942
|
[29] |
El Ghoul J, Barthou C, Saadoun M and El Mir L 2010 Physica B 405 597
|
[30] |
Omri K, Najeh I, Dhahri R, El GhoulJ and El Mir L 2014 Microelectron. Eng. 128 53
|
[31] |
Prajapati C S and Sahay P P 2013 Mater. Sci. Semicond. Process. 16 200
|
[32] |
Scherrer P 1918 GöttingerNachr 2 98
|
[33] |
Wang Q L, Yang Y F, He H P, Chen D D, Ye Z Z and Jin Y Z 2010 Nanoscale Res. Lett. 5 882
|
[34] |
Fan J C C and Goodenough J B 1997 J. Appl. Phys. 48 3524
|
[35] |
Chung Y M, Moon C S, Jung M J and Han J G 2005 Surf. Coat. Technol. 200 936
|
[36] |
Huang S Y, Cheng Q J, Xu S, Wei D Y, Zhou H P, Long J D, Levchenko I and Ostrikov K 2012 J. Appl. Phys. 111 036101
|
[37] |
Lupan O, Emelchenko G A, Ursaki V V, Chai G, Redkin A N, Gruzintsev A N, Tiginyanu I M, Chow L, Ono L K, Roldan Cuenya B, Heinrich H and Yakimov E E 2010 Mater. Res. Bull. 45 1026
|
[38] |
Mahmood K, Park S B and Sung H J 2013 J. Mater. Chem. C 1 3138
|
[39] |
Bomben K D, Moulder J F, Sobol P E and Stickle W F 1995 Handbook of X-ray Photoelectron Spectroscopy, ed. Jill Chastain, published by Perkin-Elmer Corporation Physical Electronics Division, pp. 1-261
|
[40] |
El Ghoul J, Bouguila N, Gómez-Lopera S A and El Mir L 2013 Superlattices and Microstructures 64 451
|
[41] |
Kim Y and Leem J Y 2015 Korean J. Phys. Soc. 66 1516
|
[42] |
Riveros G, Gomez H, Henríquez R, Shrebler R, Cordova R, Marotti R E and Dalchiele E A 2002 Soc. Chil. Quim. 47 1
|
[43] |
Henríquez R, Grez P, Muñoz E, Gómez H, Badán J A, Marotti R E and Dalchiele E A 2010 Thin Solid Films 518 1774
|
[44] |
Alamdari S, Tafreshiand M J and Ghamsari M S 2017 Mater. Lett. 197 94
|
[45] |
Wu C, Shen L, Yu H, Huang Q and Zhang Y C 2011 Mater. Res. Bull. 46 1107
|
[46] |
Kaur G, Mitra A and Yadav K L 2015 Prog. Nat. Sci.: Mater. Int. 25 12
|
[47] |
Dakhel A A 2010 Microelectron. Reliab. 50 211
|
[48] |
Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943
|
[49] |
Vempati S, Mitra J and Dawson P 2012 Nanoscale Res. Lett. 7 1
|
[50] |
Murali A, Sarswat P K and Sohn H Y 2019 Mater. Today Chem. 11 60
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|