Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040502    DOI: 10.1088/1674-1056/27/4/040502
GENERAL Prev   Next  

A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors

Yan-Xia Tang(唐妍霞)1,2, Abdul Jalil M Khalaf3, Karthikeyan Rajagopal4,5, Viet-Thanh Pham6, Sajad Jafari7, Ye Tian(田野)1,2
1. College of Science, Hebei North University, Zhangjiakou 075000, China;
2. Engineering Technology Research Center of Population Health Informatization in Hebei Province, Zhangjiakou 075000, China;
3. Department of Mathematics, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq;
4. Department of Electrical and Communication Engineering, the PNG University of Technology, Lae;
5. Centre for Nonlinear Dynamics, Defense University, Ethiopia;
6. Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
7. Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran
Abstract  

In this paper, we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles. These limit cycles form a layer-by-layer structure which is very unusual. Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors. Changing this new system to its forced version, we introduce a new chaotic system with an infinite number of coexisting strange attractors. We implement this system through field programmable gate arrays.

Keywords:  chaotic oscillators      multistability      hidden attractors  
Received:  09 September 2017      Revised:  07 December 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Corresponding Authors:  Viet-Thanh Pham     E-mail:  phamvietthanh@tdt.edu.vn

Cite this article: 

Yan-Xia Tang(唐妍霞), Abdul Jalil M Khalaf, Karthikeyan Rajagopal, Viet-Thanh Pham, Sajad Jafari, Ye Tian(田野) A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors 2018 Chin. Phys. B 27 040502

[1] Leonov G A and Kuznetsov N V 2013 Int. J. Bifur. Chaos 23 1330002
[2] Leonov G, Kuznetsov N and Mokaev T 2015 Commun. Nonlinear Sci. Num. Simul. 28 166
[3] Leonov G A, Kuznetsov N V and Mokaev T N 2015 Eur. Phys. J. Special Topics 224 1421
[4] Dang X Y, Li C B, Bao B C and Wu H G 2015 Chin. Phys. B 24 050503
[5] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V and Leonov G A 2016 Phys. Rep. 637 1
[6] Wei Z, Moroz I, Sprott J C, Wang Z and Zhang W 2017 Int. J. Bifur. Chaos 27 1730008
[7] Wei Z, Moroz I, Sprott J, Akgul A and Zhang W 2017 Chaos 27 033101
[8] Wei Z, Yu P, Zhang W and Yao M 2015 Nonlinear Dyn. 82 131
[9] Leonov G, Kuznetsov N and Vagaitsev V 2011 Phys. Lett. A 375 2230
[10] Leonov G, Kuznetsov N and Vagaitsev V 2012 Physica D:Nonlinear Phenomena 241 1482
[11] Leonov G, Kuznetsov N, Kiseleva M, Solovyeva E and Zaretskiy A 2014 Nonlinear Dyn. 77 277
[12] Sharma P R, Shrimali M D, Prasad A, Kuznetsov N and Leonov G 2015 Int. J. Bifur. Chaos 25 1550061
[13] Nazarimehr F, Saedi B, Jafari S and Sprott J 2017 Int. J. Bifur. Chaos 27 1750037
[14] Nazarimehr F, Jafari S, Golpayegani S M R H and Sprott J 2017 Int. J. Bifur. Chaos 27 1750023
[15] Chaudhuri U and Prasad A 2014 Phys. Lett. A 378 713
[16] Prasad A 2015 Int. J. Bifur. Chaos 25 1530005
[17] Jafari M A, Mliki E, Akgul A, Pham V T, Kingni S T, Wang X and Jafari S 2017 Nonlinear Dyn. 88 2303
[18] Feng Y, Pu J and Wei Z 2015 Eur. Phys. J. 224 1593
[19] Feng Y and Wei Z 2015 Eur. Phys. J. 224 1619
[20] Wei Z, Zhang W, Wang Z and Yao M 2015 Int. J. Bifur. Chaos 25 1550028
[21] Wei Z, Pham V T, Kapitaniak T and Wang Z 2016 Nonlinear Dyn. 85 1635
[22] Kapitaniak T and Leonov G A 2015 Eur. Phys. J. 224 1405
[23] Dudkowski D, Prasad A and Kapitaniak T 2015 Phys. Lett. A 379 2591
[24] Pisarchik A N and Feudel U 2014 Phys. Rep. 540 167
[25] Jafari S, Sprott J C and Hashemi Golpayegani S M R 2013 Phys. Lett. A 377 699
[26] Wei Z 2011 Phys. Lett. A 376 102
[27] Wei Z, Wang R and Liu A 2014 Math. Comput. Simul. 100 13
[28] Molaie M, Jafari S, Sprott J C, Hashemi Golpayegani S M R 2013 Int. J. Bifur. Chaos 23 1350188
[29] Wang X and Chen G 2012 Commun. Nonlinear Sci. Num. Simul. 17 1264
[30] Wei Z and Zhang W 2014 Int. J. Bifur. Chaos 24 1450127
[31] Wei Z, Moroz I, Wang Z, Sprott J C and Kapitaniak T 2016 Int. J. Bifur. Chaos 26 1650125
[32] Barati K, Jafari S, Sprott J C and Pham V T 2016 Int. J. Bifur. Chaos 26 1630034
[33] Pham V T, Volos C, Kapitaniak T, Jafari S and Wang X 2018 Int. J. Electron. 105 385
[34] Pham V T, Jafari S and Volos C 2017 Optik 131 343
[35] Pham V T, Jafari S, Volos C, Gotthans T, Wang X and Hoang D V 2017 Optik 130 365
[36] Jafari S, Sprott J and Molaie M 2016 Int. J. Bifur. Chaos 26 1650098
[37] Jafari S, Sprott J C, Pham V T, Volos C and Li C 2016 Nonlinear Dyn. 86 1349
[38] Wei Z, Sprott J and Chen H 2015 Phys. Lett. A 379 2184
[39] Wei Z, Zhang W and Yao M 2015 Nonlinear Dyn. 82 1251
[40] Wang L 2009 Nonlinear Dyn. 56 453
[41] Muñoz-Pacheco J, Tlelo-Cuautle E, Toxqui-Toxqui I, Sánchez-López C and Trejo-Guerra R 2014 Int. J. Electron. 101 1559
[42] Tlelo-Cuautle E, Rangel-Magdaleno J, Pano-Azucena A, Obeso-Rodelo P and Nunez-Perez J 2015 Commun. Nonlinear Sci. Num. Simul. 27 66
[43] Lai Q and Chen S 2016 Int. J. Bifur. Chaos 26 1650177
[44] Kengne J, Negou A N and Tchiotsop D 2017 Nonlinear Dyn. 88 2589
[45] Sharma P, Shrimali M, Prasad A, Kuznetsov N and Leonov G 2015 Eur. Phys. J. 224 1485
[46] Bao B, Jiang T, Xu Q, Chen M, Wu H and Hu Y 2016 Nonlinear Dyn. 86 1711
[47] Bao B C, Xu Q, Bao H and Chen M 2016 Electron. Lett. 52 1008
[48] Bao B, Bao H, Wang N, Chen M and Xu Q 2017 Chaos, Solitons & Fractals 94 102
[49] Bao B, Jiang T, Wang G, Jin P, Bao H and Chen M 2017 Nonlinear Dyn. 89 1157
[50] Sprott J C 2010 Elegant chaos:algebraically simple chaotic flows (Singapore:World Scientific)
[51] Van der Pol B 1920 Radio Rev. 1 701
[52] Van der Pol B 1926 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 978
[53] Cartwright M L and Littlewood J E 1945 Journal of the London Mathematical Society 1 180
[54] Levinson N 1949 Ann. Math. 50 127
[55] Yan S L 2016 Chin. Phys. B 25 090504
[56] Yang W, Joshi A and Xiao M 2005 Phys. Rev. Lett. 95 093902
[57] Qi G Y and Matondo S B 2014 Chin. Phys. B 23 050507
[58] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[59] Liu Y and Tong X J 2012 Chin. Phys. B 21 090506
[60] Liu S B, Sun J, Xu Z Q and Liu J S 2009 Chin. Phys. B 18 5219
[61] Min F H, Shao S Y, Huang W D and Wang E R 2015 Chin. Phys. Lett. 32 030503
[62] Kengne J, Jafari S, Njitacke Z, Khanian M Y A and Cheukem A 2017 Commun. Nonlinear Sci. Num. Simul. 52 62
[63] Pham V T, Volos C, Jafari S and Kapitaniak T 2017 J. Circu. Syst. Comput. 18 50066
[64] Rajagopal K, Akgul A, Jafari S, Karthikeyan A and Koyuncu I 2017 Chaos, Solitons & Fractals 103 476
[65] Rajagopal K, Akgul A, Jafari S and Aricioglu B 2018 Nonlinear Dyn. 91 957
[66] Kahn P B and Zarmi Y 2014 Nonlinear dynamics:exploration through normal forms:Courier Corporation
[67] Tlelo-Cuautle E, Pano-Azucena A, Rangel-Magdaleno J, Carbajal-Gomez V and Rodriguez-Gomez G 2016 Nonlinear Dyn. 85 2143
[68] Tlelo-Cuautle E, Carbajal-Gomez V, Obeso-Rodelo P, Rangel-Magdaleno J and Nuñez-Perez J C 2015 Nonlinear Dyn. 82 1879
[69] Tlelo-Cuautle E, Rangel-Magdaleno J, Pano-Azucena A, Obeso-Rodelo P and Nuñez-Perez J C 2015 Commun. Nonlinear Sci. Num. Simul. 27 66
[70] Rajagopal K, Karthikeyan A and Srinivasan A K 2017 Nonlinear Dyn. 87 2281
[71] Valli D, Muthuswamy B, Banerjee S, Ariffin M R K, Wahab A W A, Ganesan K, Subramaniam C K and Kurths J 2014 Eur. Phys. J. 223 1465
[72] Rashtchi V and Nourazar M 2015 Circuits, Systems, and Signal Processing 34 3101
[73] Xu Y, Wang L and Duan S 2016 Acta Phys. Sin. 65 120503(in Chinese)
[74] Rajagopal K, Guessas L, Karthikeyan A, Srinivasan A and Adam G 2017 Complexity 2017 1892618
[75] Rajagopal K, Karthikeyan A and Duraisamy P 2017 Complexity 2017 8979408
[76] Alçin M, Pehlivan İ and Koyuncu İ 2016 Optik 127 5500
[1] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[2] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[3] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[4] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
[5] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[6] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[7] Multistability and coexisting transient chaos in a simple memcapacitive system
Fu-Ping Wang(王富平), Fa-Qiang Wang(王发强). Chin. Phys. B, 2020, 29(5): 058502.
[8] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[9] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[10] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
[11] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[12] Parameter analysis of chaotic superlattice true random number source
Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Hao Zheng(郑浩), Li-Xin Wang(汪立新). Chin. Phys. B, 2017, 26(12): 120502.
[13] Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system
Xiaoyu Hu(胡晓宇), Chongxin Liu(刘崇新), Ling Liu(刘凌), Yapeng Yao(姚亚鹏), Guangchao Zheng(郑广超). Chin. Phys. B, 2017, 26(11): 110502.
[14] Optical bistability and multistability via double dark resonance in graphene nanostructure
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin. Chin. Phys. B, 2016, 25(6): 064201.
[15] Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin. Chin. Phys. B, 2016, 25(5): 054208.
No Suggested Reading articles found!