Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040402    DOI: 10.1088/1674-1056/27/4/040402
GENERAL Prev   Next  

Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas

D M S Zaman1, M Amina2, P R Dip1, A A Mamun1
1. Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh;
2. Department of EEE, Bangladesh University of Business and Technology(BUBT), Mirpur-2, Dhaka-1216, Bangladesh
Abstract  Nucleus-acoustic (NA) solitary waves (SWs) propagating in a self-gravitating degenerate quantum plasma (SDQP) system (containing non-relativistically degenerate heavy and light nuclei, and non-/ultra-relativistically degenerate electrons) have been theoretically investigated. The modified Korteweg-de Vries (mK-dV) equation has been derived for both planar and non-planar geometry by employing the reductive perturbation technique. It is shown that the NA SWs exist with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically light nuclei, spherical geometry, etc. significantly modify the basic features (e.g., amplitude, width, speed, etc.) of the NA SWs. The applications of our results, which are relevant to astrophysical compact objects, like white dwarfs and neutron stars, are briefly discussed.
Keywords:  self-gravitational potential      solitary waves  
Received:  24 October 2017      Revised:  23 December 2017      Accepted manuscript online: 
PACS:  04.40.-b (Self-gravitating systems; continuous media and classical fields in curved spacetime)  
  05.45.Yv (Solitons)  
Corresponding Authors:  D M S Zaman     E-mail:  saadzamanshaon@gmail.com

Cite this article: 

D M S Zaman, M Amina, P R Dip, A A Mamun Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas 2018 Chin. Phys. B 27 040402

[1] Shukla P K and Eliasson B 2006 Phys. Rev. Lett. 96 245001
[2] Shukla P K 2008 J. Plasma Phys. 74 107
[3] Mamun A A and Shukla P K 2001 Phys. Lett. A 290 173
[4] Hossen M A, Hossen M R and Mamun A A 2014 J. Korean Phys. Soc. 65 1883
[5] Hossen M R and Mamun A A 2015 Braz. J. Phys. 45 200
[6] Hossain M M and Mamun A A 2012 J. Phys. A:Math. Theor. 45 125501
[7] Ema S A, Hossen M R and Mamun A A 2015 Contrib. Plasma Phys. 55 551
[8] Shapiro S L and Teukolsky A A 1983 Black Holes, White Dwarfs and Neutron Stars:The Physics of Compact Objects (New York:John Wiley and Sons)
[9] Chandrasekhar S 1931 Phi. Mag. 11 592
[10] Chandrasekhar S 1931 Astrophys. J. 74 81
[11] Koester D and Chanmugam G 1990 Rep. Prog. Phys. 53 837
[12] Koester D 2002 Astron. Astrophys. 11 33
[13] Garcia-Berro E, Torres S, Althaus L G, Renedo I, Loren-Aguiltar P, et al. 2010 Nature 465 194
[14] Chandrasekhar S 1935 Mon. Notices Royal Astron. Soc. 170 405
[15] Mamun A A and Shukla P K 2010 Phys. Plasmas 17 104504
[16] Mamun A A and Shukla P K 2010 Phys. Lett. A 374 4238
[17] Shukla P K, Mamun A A and Mendis D A 2011 Phys. Rev. E 84 026405
[18] Mamun A A, Shukla P K and Mendis D A 2012 J. Plasma Phys. 78 143
[19] Roy N 2012 Phys. Plasmas 19 064704
[20] Hossen M R, Hossen M A, Sultana S and Mamun A A 2015 Astrophys. Space Sci. 357 34
[21] Shah M G, Hossen M R, Sultana S and Mamun A A 2015 Chin. Phys. Lett. 32 085203
[22] Chowdhury N A, Hasan M M, Mannan A and Mamun A A 2018 Vacuum 147 31
[23] Hossen M R, Nahar L and Mamun A A 2014 Phys. Scr. 89 105603
[24] Hasan M M, Hossen M A, Rafat A and Mamun A A 2016 Chin. Phys. B 25 105203
[25] El-Taibany W F and Mamun A A 2012 Phys. Rev. E 85 026406
[26] Dip P R, Hossen M A, Salahuddin M and Mamun A A 2017 Eur. Phys. J. D 71 52
[27] Hossen M R, Nahar L, Sultana S and Mamun A A 2014 High Energy Density Phys. 13 13
[28] Hosen B, Shah M G, Hossen M R and Mamun A A 2016 Eur. Phys. J. Plus 131 81
[29] Dip P R, Hossen M A, Salahuddin M and Mamun A A 2017 J. Korean Phys. Soc. 70 777
[30] Shukla P K and Eliasson B 2011 Phys.-Usp. 53 51
[31] Shukla P K and Eliasson B 2011 Rev. Mod. Phys. 83 885
[32] Jeans J H 1902 Philos. Trans. R. Soc. A 199 1
[33] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford, London:Clarendon Press)
[34] Shaikh S, Khan A and Bhatia P K 2007 Astrophys. Space Sci. 312 35.
[35] Kaothekar S, Soni G D, Prajapati R P and Chhajlani R K 2016 Astrophys. Space Sci. 361 204
[36] Mamun A A, Amina M and Schlickeiser R 2016 Phys. Plasmas 23 094503
[37] Mamun A A and Schlickeiser R 2016 Phys. Plasmas 23 034502
[38] Mamun A A and Schlickeiser R 2015 Phys. Plasmas 22 103702
[39] Mamun A A, Amina M and Schlickeiser R 2017 Phys. Plasmas 24 042307
[40] Hossen M R, Nahar L, Sultana S and Mamun A A 2014 Astrophys. Space Sci. 353 123
[41] Hossen M R, Nahar L and Mamun A A 2014 J. Korean Phys. Soc. 65 1863
[42] Shah M G, Mamun A A and Hossen M R 2015 J. Korean Phys. Soc. 66 1239
[43] Zaman D M S, Amina M, Dip P R and Mamun A A 2017 Eur. Phys. J. Plus 132 457
[44] Washimi H and Taniuti T 1996 Phys. Rev. Lett. 17 996
[45] Hong-Wei Y., Bao-Shu Y., Yao-Deng C, et al. 2015 Chin. Phys. B 24 090205
[46] Li J, Fang N, Wang X, et al. 2016 Chin. Phys. B 25 040202
[47] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102
[1] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[2] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[3] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[4] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[5] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[6] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[7] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[8] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[9] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li (殷久利), Xing Qian-Qian (邢倩倩), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(8): 080201.
[10] Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method
Saïdou Abdoulkary, Alidou Mohamadou, Ousmanou Dafounansou, Serge Yamigno Doka. Chin. Phys. B, 2014, 23(12): 120506.
[11] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[12] The extended cubic B-spline algorithm for a modified regularized long wave equation
İ. Dağ, D. Irk, M. Sarı. Chin. Phys. B, 2013, 22(4): 040207.
[13] Effects of dust size distribution on nonlinear waves in a dusty plasma
Chen Jian-Hong(陈建宏). Chin. Phys. B, 2009, 18(6): 2121-2128.
[14] Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma
Xue Ju-Kui (薛具奎), Lang He (郎和). Chin. Phys. B, 2003, 12(5): 538-541.
[15] Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
Hua Cun-Cai (化存才), Liu Yan-Zhu (刘延柱). Chin. Phys. B, 2002, 11(6): 547-552.
No Suggested Reading articles found!