Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 020202    DOI: 10.1088/1674-1056/27/2/020202
GENERAL Prev   Next  

A local energy-preserving scheme for Zakharov system

Qi Hong(洪旗)1, Jia-ling Wang(汪佳玲)2, Yu-Shun Wang(王雨顺)3
1. Graduate School of China Academy of Engineering Physics, Beijing 100088, China;
2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3. Jiangsu Key Laboratory of NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
Abstract  In this paper, we propose a local conservation law for the Zakharov system. The property is held in any local time-space region which is independent of the boundary condition and more essential than the global energy conservation law. Based on the rule that the numerical methods should preserve the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the system. The merit of the proposed scheme is that the local energy conservation law can be conserved exactly in any time-space region. With homogeneous Dirchlet boundary conditions, the proposed LEP scheme also possesses the discrete global mass and energy conservation laws. The theoretical properties are verified by numerical results.
Keywords:  Zakharov system      local energy-preserving scheme      global mass and energy conservation laws  
Received:  11 August 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11771213) and the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2243141701090).
Corresponding Authors:  Jia-ling Wang     E-mail:  wjl19900724@126.com
About author:  02.60.Cb; 02.70.Bf; 02.60.Lj

Cite this article: 

Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺) A local energy-preserving scheme for Zakharov system 2018 Chin. Phys. B 27 020202

[1] Zakharov V E 1972 Sov. Phys. JETP 35 908
[2] Hadouaj H, Malomed B and Maugin G 1991 Phys. Rev. A 44 3932
[3] Hadouaj H, Malomed B and Maugin G 1991 Phys. Rev. A 44 3925
[4] Bourgain J and Colliander J 1996 Int. Math. Res. Notices 11 515
[5] Colliander J 1998 J. Differential Equations 148 351
[6] Fang D, Pecher H and Zhong S 2008 Internat. Math. J. Anal. Appl. 29 265
[7] Payne G L, Nicholson D R and Downie R M 1983 J. Comput. Phys. 50 482
[8] Bao W, Sun F and Wei G W 2003 J. Comput. Phys. 190 201
[9] Bao W and Sun F 2005 SIAM J. Sci. Comput. 26 1057
[10] Jin S and Zheng C 2006 J. Sci. Comput. 26 127
[11] Bhrawy A 2014 Appl. Math. Comput. 247 30
[12] Wang J 2008 Chin. Phys. Lett. 25 3531
[13] Wang J 2009 Comput. Phys. Commun. 180 1063
[14] Xia Y, Xu Y and Shu C W 2010 J. Comput. Phys. 229 1238
[15] Glassey R 1992 J. Comput. Phys. 100 377
[16] Glassey R 1992 Math. Comput. 58 83
[17] Chang Q and Jiang H 1994 J. Comput. Phys. 112 309
[18] Chang Q, Guo B and Jiang H 1995 Math. Comput. 64 537
[19] Zhang F Y and Guo B L 2012 Acta Math. Sci. 328 2431
[20] Cai J, Wang J and Wang Y 2015 Chin. Phys. B 24 050205
[21] Song M, Qian X and Song S 2016 Chin. Phys. Lett. 33 110202
[22] Fu H, Zhou W, Qian X, Song S and Zhang L 2016 Chin. Phys. B 25 110201
[23] Liao C, Cui J, Liang J and Ding X 2016 Chin. Phys. B 25 010205
[24] Wang Y, Wang B and Qin M Z 2008 Sci. Chin. Series A:Mathematics 51 2115
[25] Cai J, Wang Y and Liang H 2013 J. Comput. Phys. 239 30
[26] Cai J and Wang Y 2013 J. Comput. Phys. 239 72
[27] Wang J and Wang Y 2017 J. Comput. Math. 35 289
[28] Gong Y, Cai J and Wang Y 2014 J. Comput. Phys. 279 80
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[3] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[4] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[5] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[6] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[7] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[8] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[9] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[10] Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force
Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志). Chin. Phys. B, 2022, 31(6): 060203.
[11] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[12] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[13] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[14] A new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy
Chao Yan(颜超), Jing Feng(冯径), Ping-Lv Yang(杨平吕), and Si-Xun Huang(黄思训). Chin. Phys. B, 2021, 30(12): 120204.
[15] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
No Suggested Reading articles found!