CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Bandgap engineering to tune the optical properties of BexMg1-xX (X=S, Se, Te) alloys |
B Sabir1, N A Noor2, M Rashid3, Fasih Ud Din4, Shahid M Ramay5, Asif Mahmood6 |
1 Centre for Advanced Studies in Physics, Government College University, Lahore, 54000, Pakistan; 2 Department of Physics, School of Science, University of Management and Technology, Lahore, Pakistan; 3 Department of Physics, COMSATS Institute of Information Technology, 44000 Islamabad, Pakistan; 4 Department of Physics, Division of Science and Technology, University of Education Township Campus Lahore, Pakistan; 5 Physics and Astronomy Department, College of Science King Saud University Riyadh, Saudi Arabia; 6 Chemical Engineering Department, College of Engineering King Saud University Riyadh, Saudi Arabia |
|
|
Abstract Structural, electronic, and optical properties of alloys BexMg1-xX(X=S, Se, Te) in the assortment 0 < x < 1 were theoretically reported for the first time in zinc-blende (ZB) phase. The calculations were carried out by using full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) formalism contained by the framework of density functional theory (DFT). Wu-Cohen (WC) generalized gradient approximation (GGA), based on optimization energy, has been applied to calculate these theoretical results. In addition, we used Becke and Johnson (mBJ-GGA) potential, modified form of GGA functional, to calculate electronic structural properties up to a high precision degree. The alloys were composed with the concentrations x=0.25, 0.5, and 0.75 in pursuance of ‘special quasi-random structures’ (SQS) approach of Zunger for the restoration of disorder around the observed site of alloys in the first few shells. The structural parameters have been predicted by minimizing the total energy in correspondence of unit cell volume. Our alloys established direct band gap at different concentrations that make their importance in optically active materials. Furthermore, density of states was discussed in terms of the contribution of Be and Mg s and chalcogen (S, Se, and Te) s and p states and observed charge density helped us to investigate the bonding nature. By taking into consideration of immense importance in optoelectronics of these materials, the complex dielectric function was calculated for incident photon energy in the range 0-15 eV.
|
Received: 28 July 2017
Revised: 29 August 2017
Accepted manuscript online:
|
PACS:
|
61.66.Dk
|
(Alloys )
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
51.70.+f
|
(Optical and dielectric properties)
|
|
Corresponding Authors:
N A Noor
E-mail: naveedcssp@gmail.com
|
Cite this article:
B Sabir, N A Noor, M Rashid, Fasih Ud Din, Shahid M Ramay, Asif Mahmood Bandgap engineering to tune the optical properties of BexMg1-xX (X=S, Se, Te) alloys 2018 Chin. Phys. B 27 016101
|
[1] |
Pandey R and Sivaraman S 1991 J. Phys. Chem. Solids 52 211
|
[2] |
Rached D, Benkhettou N, Soudini B, Abbar B, Sekkal N and Driz M 2003 Phys. Stat. Sol. (b) 240 565
|
[3] |
Hasse M A, Qiu J, DePuydt J M and Cheng H 1991 Appl. Phys. Lett. 59 1272
|
[4] |
Albin S, Satira J D, Livingston D L and Shull T A 1992 Jpn. J. Appl. Phys. 31 715
|
[5] |
Wang M W, Phillips M C, Swenberg J F, Yu E T, McCaldin J O and McGill T C 1993 J. Appl. Phys. 73 4660
|
[6] |
Wang J F, Swenberg M C, Phillips E T, Yu J O, McCaldin R W, Grant T C and McGill 1994 Appl. Phys. Lett. 64 3455
|
[7] |
Duman S, Baǧci S, Tütüncü H M and Srivastava G P 2006 Phys. Rev. B 73 205201
|
[8] |
Bouhafs B, Aourag H, Ferhat M and Certier M 2000 J. Phys: Condens. Matter 12 5655
|
[9] |
Madelung O 1996 Semiconductor Basic Data (New York: Springer-Verlag)
|
[10] |
Wagner V, Liang J J, Kruse R, Gundel S, Keim M, Waag A and Geurts J 1999 Phys. Status Solidi b 215 87
|
[11] |
Wilmers K, Wethkamp T, Esser N, Cobet C, Richter W, Wagner V, Lugauer H, Fischer F, Gerhard T, Keim M and Cardona M 1999 Phys. Rev. B 59 10071
|
[12] |
Harrison W 1980 Electronic Structure of Solids (San Francisco: Freeman)
|
[13] |
Yim W M, Dismukes J P, Stofko E J and Paff R J 1972 J. Phys. Chem. Solids 33 501
|
[14] |
Amin B and Ahmad I 2009 J. Appl. Phys. 106 093710
|
[15] |
Waag A, Fischer F, Lugauer H J, Litz Th, Gerhardt T, Nürnberger J, Lunz U, Zehnder U, Ossau W, Landwehr G, Roos B and Richter H 1997 Mater. Sci. Eng. B 43 65
|
[16] |
Buckley M R, Peiris F C, Maksimov O, Muňoz M and Tamargo M C 2002 Appl. Phys. Lett. 81 5156
|
[17] |
Peiris F C, Lee S, Bindley U and Furdyna J K 1999 J. Appl. Phys. 86 719
|
[18] |
Maksimov O 2005 Rev. Adv. Mater. Sci. 9 178
|
[19] |
Zunger A, Wei S H, Feireira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
|
[20] |
Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
|
[21] |
Kohn W and Sham L 1965 Phys. Rev. A 140 1133
|
[22] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, an augmented plane wave+local orbitals program for calculating crystal properties
|
[23] |
Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
|
[24] |
Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
|
[25] |
Murnagham F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[26] |
Charifi Z, Baaziz H, Hassan F E H and Bouarissa N 2005 J. Phys.: Condens. Matter 17 4083
|
[27] |
Jobst B, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97
|
[28] |
Amin B, Ahmad I, Maqbool M, Ikram N, Saeed Y, Ahmad A and Arif S 2010 J. Alloys Compd. 493 2012
|
[29] |
Arif S, Amin B, Ahmad I, Maqbool M, Ahmad R, Haneef M and Ikram N 2012 Current Appl. Phys. 12 184
|
[30] |
Noor N A, Tahir W, Aslam F and Shaukat A 2012 Physica B 407 943
|
[31] |
Vegard L 1921 Z. Phys. 5 17
|
[32] |
Mahmood Q, Alay-e-Abbas S M, Mahmood I, Mahmood A and Noor N A 2016 Chin. Phys. B 25 047101
|
[33] |
Mahmood Q, Hassan M and Faridi M A 2017 Chin. Phys. B 26 027503
|
[34] |
Pauling L 1932 J. Amer. Chem. Soc. 54 3570
|
[35] |
Amin B, Ahmed I, Maqbool M, Goumri-said S and Ahmad R 2011 J. Appl. Phys. 109 0231109
|
[36] |
Noor N A, Ikram N, Ali S, S. Nazir, Allay-e-Abbas M S and Shaukat A 2010 J. Alloys Compd. 507 356
|
[37] |
Yousaf M, Saeed M A, Mat Isa A R, Shaari A and Rahnamaye Aliabad H A 2012 Chin. Phys. Lett. 29 107401
|
[38] |
Ahmad I, Amin B, Maqbool M, Muhammad S, Murtaza G, Ali S and Noor N A 2012 Chin. Phys. Lett. 29 097102
|
[39] |
Ambrosch-Draxl C and Sofo J O 2006 Comp. Phys. Commun. 175 1
|
[40] |
Okuyama H, Nakano K, Miyajima T and Akimato K 1992 J. Cryst. Growth 117 139
|
[41] |
Gokoglu G, Durandurdu M and Gulseren O 2009 Comp. Mat. Sci. 47 593
|
[42] |
Noor N A and Shaukat A 2012 Int. J. Mod. Phys. B 26 1250168
|
[43] |
Duman S, Bagci S, Tutuncu H M and Srivastava G P 2006 Phys. Rev. B 73 205201
|
[44] |
Narayana C, Nesamong V J and Ruoff A L 1997 Phys. Rev. B 56 14338
|
[45] |
Luo H, Ghandehair K, Geene R G, Ruoff A L, Trail S S and DiSalvo F J 1995 Phys. Rev. B 52 7058
|
[46] |
Baaziz H, Charifi Z, Hassan F E H, Hashemifar S J and Akbarzadeh H 2006 Phys. Status Solidi B 243 1296
|
[47] |
González-Diáz M, Rodríguez-Hermández P and Muňoz A 1997 Phys. Rev. B 55 14043
|
[48] |
Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257
|
[49] |
Watanabe K, Th Litz M, Korn M, Ossau W, Waag A, Landwehr G and Schüssler U 1998 J. Appl. Phys. 81 451
|
[50] |
Jobst B, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97
|
[51] |
Teo K L, Feng Y P, Li M F, Chang T C and Xia J B 1994 Semicond. Sci. Technol. 9 349
|
[52] |
Yim W M, Dismukes J P, Stofko E J and Paff R J 1972 J. Phys. Chem. Solids 33 501
|
[53] |
Drief F, Tadjer A, Mesri D and Aourag H 2004 Catal. Today 89 11343
|
[54] |
Duman S, Baǧci S, Tütüncü H M and Srivastava G P 2006 Phys. Rev. B 73 205201
|
[55] |
Rabah M, Abbar B, Al-Douri Y, Bouhafs B and Sahraoui B 2003 Mat. Sci. Engin. B 100 163
|
[56] |
Wagner V, Liang J J, Kruse R, Gundel S, Kleim M and Waag A 1999 J. Geurts, Phys. Status Solidi B 215 87
|
[57] |
Mameri Z, Zaoui A, Belabbes A and Ferhat M J Mater. Chem. Phys. 123 343
|
[58] |
Srivastava G P, Tutuncu H M and Gunhan N 2004 Phys. Rev. B 70 085206
|
[59] |
Okoye C M I 2004 Eur. Phys. J. B 39 5
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|