Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016101    DOI: 10.1088/1674-1056/27/1/016101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Bandgap engineering to tune the optical properties of BexMg1-xX (X=S, Se, Te) alloys

B Sabir1, N A Noor2, M Rashid3, Fasih Ud Din4, Shahid M Ramay5, Asif Mahmood6
1 Centre for Advanced Studies in Physics, Government College University, Lahore, 54000, Pakistan;
2 Department of Physics, School of Science, University of Management and Technology, Lahore, Pakistan;
3 Department of Physics, COMSATS Institute of Information Technology, 44000 Islamabad, Pakistan;
4 Department of Physics, Division of Science and Technology, University of Education Township Campus Lahore, Pakistan;
5 Physics and Astronomy Department, College of Science King Saud University Riyadh, Saudi Arabia;
6 Chemical Engineering Department, College of Engineering King Saud University Riyadh, Saudi Arabia
Abstract  Structural, electronic, and optical properties of alloys BexMg1-xX(X=S, Se, Te) in the assortment 0 < x < 1 were theoretically reported for the first time in zinc-blende (ZB) phase. The calculations were carried out by using full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) formalism contained by the framework of density functional theory (DFT). Wu-Cohen (WC) generalized gradient approximation (GGA), based on optimization energy, has been applied to calculate these theoretical results. In addition, we used Becke and Johnson (mBJ-GGA) potential, modified form of GGA functional, to calculate electronic structural properties up to a high precision degree. The alloys were composed with the concentrations x=0.25, 0.5, and 0.75 in pursuance of ‘special quasi-random structures’ (SQS) approach of Zunger for the restoration of disorder around the observed site of alloys in the first few shells. The structural parameters have been predicted by minimizing the total energy in correspondence of unit cell volume. Our alloys established direct band gap at different concentrations that make their importance in optically active materials. Furthermore, density of states was discussed in terms of the contribution of Be and Mg s and chalcogen (S, Se, and Te) s and p states and observed charge density helped us to investigate the bonding nature. By taking into consideration of immense importance in optoelectronics of these materials, the complex dielectric function was calculated for incident photon energy in the range 0-15 eV.
Keywords:  BexMg1-xX(X=S,Se,Te) alloys      zinc-blende (ZB) phase      density functional theory (DFT)      electronic and optical properties  
Received:  28 July 2017      Revised:  29 August 2017      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  51.70.+f (Optical and dielectric properties)  
Corresponding Authors:  N A Noor     E-mail:  naveedcssp@gmail.com

Cite this article: 

B Sabir, N A Noor, M Rashid, Fasih Ud Din, Shahid M Ramay, Asif Mahmood Bandgap engineering to tune the optical properties of BexMg1-xX (X=S, Se, Te) alloys 2018 Chin. Phys. B 27 016101

[1] Pandey R and Sivaraman S 1991 J. Phys. Chem. Solids 52 211
[2] Rached D, Benkhettou N, Soudini B, Abbar B, Sekkal N and Driz M 2003 Phys. Stat. Sol. (b) 240 565
[3] Hasse M A, Qiu J, DePuydt J M and Cheng H 1991 Appl. Phys. Lett. 59 1272
[4] Albin S, Satira J D, Livingston D L and Shull T A 1992 Jpn. J. Appl. Phys. 31 715
[5] Wang M W, Phillips M C, Swenberg J F, Yu E T, McCaldin J O and McGill T C 1993 J. Appl. Phys. 73 4660
[6] Wang J F, Swenberg M C, Phillips E T, Yu J O, McCaldin R W, Grant T C and McGill 1994 Appl. Phys. Lett. 64 3455
[7] Duman S, Baǧci S, Tütüncü H M and Srivastava G P 2006 Phys. Rev. B 73 205201
[8] Bouhafs B, Aourag H, Ferhat M and Certier M 2000 J. Phys: Condens. Matter 12 5655
[9] Madelung O 1996 Semiconductor Basic Data (New York: Springer-Verlag)
[10] Wagner V, Liang J J, Kruse R, Gundel S, Keim M, Waag A and Geurts J 1999 Phys. Status Solidi b 215 87
[11] Wilmers K, Wethkamp T, Esser N, Cobet C, Richter W, Wagner V, Lugauer H, Fischer F, Gerhard T, Keim M and Cardona M 1999 Phys. Rev. B 59 10071
[12] Harrison W 1980 Electronic Structure of Solids (San Francisco: Freeman)
[13] Yim W M, Dismukes J P, Stofko E J and Paff R J 1972 J. Phys. Chem. Solids 33 501
[14] Amin B and Ahmad I 2009 J. Appl. Phys. 106 093710
[15] Waag A, Fischer F, Lugauer H J, Litz Th, Gerhardt T, Nürnberger J, Lunz U, Zehnder U, Ossau W, Landwehr G, Roos B and Richter H 1997 Mater. Sci. Eng. B 43 65
[16] Buckley M R, Peiris F C, Maksimov O, Muňoz M and Tamargo M C 2002 Appl. Phys. Lett. 81 5156
[17] Peiris F C, Lee S, Bindley U and Furdyna J K 1999 J. Appl. Phys. 86 719
[18] Maksimov O 2005 Rev. Adv. Mater. Sci. 9 178
[19] Zunger A, Wei S H, Feireira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[20] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[21] Kohn W and Sham L 1965 Phys. Rev. A 140 1133
[22] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, an augmented plane wave+local orbitals program for calculating crystal properties
[23] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[24] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[25] Murnagham F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[26] Charifi Z, Baaziz H, Hassan F E H and Bouarissa N 2005 J. Phys.: Condens. Matter 17 4083
[27] Jobst B, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97
[28] Amin B, Ahmad I, Maqbool M, Ikram N, Saeed Y, Ahmad A and Arif S 2010 J. Alloys Compd. 493 2012
[29] Arif S, Amin B, Ahmad I, Maqbool M, Ahmad R, Haneef M and Ikram N 2012 Current Appl. Phys. 12 184
[30] Noor N A, Tahir W, Aslam F and Shaukat A 2012 Physica B 407 943
[31] Vegard L 1921 Z. Phys. 5 17
[32] Mahmood Q, Alay-e-Abbas S M, Mahmood I, Mahmood A and Noor N A 2016 Chin. Phys. B 25 047101
[33] Mahmood Q, Hassan M and Faridi M A 2017 Chin. Phys. B 26 027503
[34] Pauling L 1932 J. Amer. Chem. Soc. 54 3570
[35] Amin B, Ahmed I, Maqbool M, Goumri-said S and Ahmad R 2011 J. Appl. Phys. 109 0231109
[36] Noor N A, Ikram N, Ali S, S. Nazir, Allay-e-Abbas M S and Shaukat A 2010 J. Alloys Compd. 507 356
[37] Yousaf M, Saeed M A, Mat Isa A R, Shaari A and Rahnamaye Aliabad H A 2012 Chin. Phys. Lett. 29 107401
[38] Ahmad I, Amin B, Maqbool M, Muhammad S, Murtaza G, Ali S and Noor N A 2012 Chin. Phys. Lett. 29 097102
[39] Ambrosch-Draxl C and Sofo J O 2006 Comp. Phys. Commun. 175 1
[40] Okuyama H, Nakano K, Miyajima T and Akimato K 1992 J. Cryst. Growth 117 139
[41] Gokoglu G, Durandurdu M and Gulseren O 2009 Comp. Mat. Sci. 47 593
[42] Noor N A and Shaukat A 2012 Int. J. Mod. Phys. B 26 1250168
[43] Duman S, Bagci S, Tutuncu H M and Srivastava G P 2006 Phys. Rev. B 73 205201
[44] Narayana C, Nesamong V J and Ruoff A L 1997 Phys. Rev. B 56 14338
[45] Luo H, Ghandehair K, Geene R G, Ruoff A L, Trail S S and DiSalvo F J 1995 Phys. Rev. B 52 7058
[46] Baaziz H, Charifi Z, Hassan F E H, Hashemifar S J and Akbarzadeh H 2006 Phys. Status Solidi B 243 1296
[47] González-Diáz M, Rodríguez-Hermández P and Muňoz A 1997 Phys. Rev. B 55 14043
[48] Okuyama H, Kishita Y and Ishibashi A 1998 Phys. Rev. B 57 2257
[49] Watanabe K, Th Litz M, Korn M, Ossau W, Waag A, Landwehr G and Schüssler U 1998 J. Appl. Phys. 81 451
[50] Jobst B, Hommel D, Lunz U, Gerhard T and Landwehr G 1996 Appl. Phys. Lett. 69 97
[51] Teo K L, Feng Y P, Li M F, Chang T C and Xia J B 1994 Semicond. Sci. Technol. 9 349
[52] Yim W M, Dismukes J P, Stofko E J and Paff R J 1972 J. Phys. Chem. Solids 33 501
[53] Drief F, Tadjer A, Mesri D and Aourag H 2004 Catal. Today 89 11343
[54] Duman S, Baǧci S, Tütüncü H M and Srivastava G P 2006 Phys. Rev. B 73 205201
[55] Rabah M, Abbar B, Al-Douri Y, Bouhafs B and Sahraoui B 2003 Mat. Sci. Engin. B 100 163
[56] Wagner V, Liang J J, Kruse R, Gundel S, Kleim M and Waag A 1999 J. Geurts, Phys. Status Solidi B 215 87
[57] Mameri Z, Zaoui A, Belabbes A and Ferhat M J Mater. Chem. Phys. 123 343
[58] Srivastava G P, Tutuncu H M and Gunhan N 2004 Phys. Rev. B 70 085206
[59] Okoye C M I 2004 Eur. Phys. J. B 39 5
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[4] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[5] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[6] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[7] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[8] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[9] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[10] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[11] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[12] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[13] New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations
M A Hadi, M S Ali, S H Naqib, A K M A Islam. Chin. Phys. B, 2017, 26(3): 037103.
[14] Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国). Chin. Phys. B, 2017, 26(12): 127101.
[15] Electronic structure of O-doped SiGe calculated by DFT+U method
Zong-Yan Zhao(赵宗彦), Wen Yang(杨雯), Pei-Zhi Yang(杨培志). Chin. Phys. B, 2016, 25(12): 127101.
No Suggested Reading articles found!