Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018903    DOI: 10.1088/1674-1056/26/1/018903
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements

Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏)
Engineering Research Center of Internet of Things Technology Applications of the Ministry of Education, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
Abstract  This paper investigates asymptotic bounded consensus tracking (ABCT) of double-integrator multi-agent systems (MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target (AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol (CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents. The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results.
Keywords:  asymptotic bounded consensus tracking      multi-agent systems      without velocity measurements      sampled-data control  
Received:  08 September 2016      Revised:  30 September 2016      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  05.65.+b (Self-organized systems)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, 61473138, and 61403168) and the Fundamental Research Funds for the Central Universities of China (Grant No. JUSRP51510).
Corresponding Authors:  Zhi-Hai Wu     E-mail:  wuzhihai@jiangnan.edu.cn

Cite this article: 

Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏) Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements 2017 Chin. Phys. B 26 018903

[1] Wang L S and Wu Z H 2014 Chin. Phys. B 23 098901
[2] Su H S, Wang X F and Lin Z L 2009 IEEE Trans. Autom. Control 54 293
[3] Su H S, Wang X F and Chen G R 2009 Inter. J. Control 82 1334
[4] Qi B, Cui B T and Lou X Y 2014 Chin. Phys. B 23 110501
[5] Luo X Y, Han N N and Guan X P 2010 Chin. Phys. B 19 100202
[6] Cao J F, Ling Z H, Yuan Y F and Gao C 2014 Chin. Phys. B 23 070509
[7] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 018901
[8] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 048901
[9] Sun Y Z and Ruan J 2008 Chin. Phys. B 17 4137
[10] Tan F X, Guan X P and Liu D R 2008 Chin. Phys. B 17 3531
[11] Song H Y, Yu L, Hu H X and Zhang W A 2012 Chin. Phys. B 21 028901
[12] Wu Z H, Peng L, Xie L B and Wen J W 2012 Chin. Phys. B 21 128902
[13] Wu Z H, Peng L, Xie L B and Wen J W 2013 Chin. Phys. B 22 128901
[14] Ji L H and Liao X F 2013 Chin. Phys. B 22 040203
[15] Sun F L and Zhu W 2013 Chin. Phys. B 22 110204
[16] Cortés J 2008 Automatica 44 726
[17] Hu J P and Hong Y G 2007 Physica A 374 853
[18] Zhu W and Cheng D Z 2010 Automatica 46 1994
[19] Du H B, Li S H and Shi P 2012 Inter. J. Control 85 1913
[20] Hu G Q 2012 Syst. Control Lett. 61 134
[21] Li S H, Du H B and Lin X Z 2011 Automatica 47 1706
[22] Cao Y C, Ren W and Meng Z Y 2010 Syst. Control Lett. 59 522
[23] Lu X Q, Chen S H and Lü J H 2013 IET Control Theory Appl. 7 1562
[24] Lou Y C and Hong Y G 2012 Automatica 48 879
[25] Wang Y, Cheng L, Hou Z G, Tan M and Wang M 2014 Automatica 50 1922
[26] Wu Z H, Peng L, Xie L B and Wen J W 2012 J. Intell. Robot. Syst. 68 261
[27] Wu Z H, Peng L, Xie L B and Wen J W 2014 Int. J. Control Autom. Syst. 12 44
[28] Wu Z H, Peng L, Xie L B and Wen J W 2015 Int. J. Syst. Sci. 46 546
[29] Cheng Y L and Xie D M 2013 Inter. J. Control 86 923
[30] Cheng Y L and Xie D M 2014 Inter. J. Control 87 41
[31] Xie D M and Cheng Y L 2015 Int. J. Robust Nonlinear Control 25 252
[32] Wu Z H, Peng L, Xie L B and Wen J W 2015 IET Control Theory Appl. 9 1909
[33] Horn R A and Jornson C R 1985 Matrix Analysis (New York:Cambridge University)
[34] Gao Y P, Wang L, Xie G M and Wu B 2009 Inter. J. Control 82 2193
[35] Jury E I 1964 Theory and Application of the z-Transform Method (New York:Wiley)
[36] Tang Z J, Huang T Z, Shao J L and Hu J P 2011 IET Control Theory Appl. 5 1658
[37] Hu J P and Feng G 2011 Asian J. Control 13 988
[38] Hu J P and Zheng W X 2014 Automatica 50 1416
[39] Hu J P, Geng J and Zhu H 2015 Commun. Nonlinear Sci. Numer. Simul. 20 559
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[5] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[6] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[7] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[8] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[9] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[10] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[11] Free-matrix-based time-dependent discontinuous Lyapunov functional for synchronization of delayed neural networks with sampled-data control
Wei Wang(王炜), Hong-Bing Zeng(曾红兵), Kok-Lay Teo. Chin. Phys. B, 2017, 26(11): 110503.
[12] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[13] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[14] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[15] Distributed H control of multi-agent systems with directed networks
Liu Wei (刘伟), Liu Ai-Li (柳爱利), Zhou Shao-Lei (周绍磊). Chin. Phys. B, 2015, 24(9): 090208.
No Suggested Reading articles found!