CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes |
Zheng-Hu Zuo(左正笏)1,2, Qing-Feng Zhan(詹清峰)1,2, Bin Chen(陈斌)1,2, Hua-Li Yang(杨华礼)1,2, Yi-Wei Liu(刘宜伟)1,2, Lu-Ping Liu(刘鲁萍)1,2, Ya-Li Xie(谢亚丽)1,2, Run-Wei Li(李润伟)1,2 |
1 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract Free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 (PZT(95/5)) thin film is fabricated on 200-nm-thick Pt foil by using pulsed laser deposition. X-ray diffraction patterns indicate that free-standing PZT(95/5) film possesses an a-axis preferred orientation. The critical electric field for the 300-nm-thick free-standing PZT(95/5) film transiting from antiferroelectric to ferroelectric phases is increased to 770 kV/cm, but its saturation polarization remains almost unchanged as compared with that of the substrate-clamped PZT(95/5) film. The energy storage density and energy efficiency of the substrate-clamped PZT(95/5) film are 6.49 J/cm3 and 54.5%, respectively. In contrast, after removing the substrate, the energy storage density and energy efficiency of the free-standing PZT(95/5) film are enhanced up to 17.45 J/cm3 and 67.9%, respectively.
|
Received: 23 February 2016
Revised: 11 April 2016
Accepted manuscript online:
|
PACS:
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
84.60.Ve
|
(Energy storage systems, including capacitor banks)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374312, 51401230, and 51522105) and the Fund for Ningbo Municipal Science and Technology Innovation Team, China (Grant No. 2015B11001). |
Corresponding Authors:
Run-Wei Li
E-mail: zhanqf@nimte.ac.cn
|
Cite this article:
Zheng-Hu Zuo(左正笏), Qing-Feng Zhan(詹清峰), Bin Chen(陈斌), Hua-Li Yang(杨华礼), Yi-Wei Liu(刘宜伟), Lu-Ping Liu(刘鲁萍), Ya-Li Xie(谢亚丽), Run-Wei Li(李润伟) Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes 2016 Chin. Phys. B 25 087702
|
[1] |
Chen X F, Cao F, Zhang H L, Yu G, Wang G S, Dong X L, Gu Y, He H L and Liu Y S 2012 J. Am. Ceram. Soc. 95 1163
|
[2] |
Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T and Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 1968
|
[3] |
Liu Y Y, Lu X M, Jin Y M, Peng S, Huang F Z, Kan Y, Xu T T, Min K L and Zhu J S 2012 Appl. Phys. Lett. 100 212902
|
[4] |
Shirane G, Sawaguchi S and Takagi Y 1951 Phys. Rev. 84 476
|
[5] |
Jaffe B 1961 Proc. IRE 49 1264
|
[6] |
Xu B, Moses P, Pai N G and Cross L E 1998 Appl. Phys. Lett. 72 593
|
[7] |
Sternberg A, Kundzinsa K, Zaulsa V and Aulikaa I 2004 J. Eur. Ceram. Soc. 24 1653
|
[8] |
Parui J and Krupanidhi S B 2008 Appl. Phys. Lett. 92 192901
|
[9] |
Jiang S J, Zhang L, Zhang G Z, Liu S S, Yi J Q, Xiong X, Yu Y, He J G and Zeng Y K 2013 Ceram. Int. 39 5571
|
[10] |
Sa T L, Cao Z P, Wang YJ and Zhu H B 2014 Appl. Phys. Lett. 105 043902
|
[11] |
Ge J, Dong X L, Chen Y, Cao F and Wang G S 2013 Appl. Phys. Lett. 102 142905
|
[12] |
Ge J, Pan G, Remiens D, Chen Y, Cao F, Dong X L and Wang G S 2012 Appl. Phys. Lett. 101 112905
|
[13] |
Pan W Y, Dan C Q, Zhang Q M and Cross L E 1989 J. Appl. Phys. 66 6014
|
[14] |
Jang H W, Baek S H, Ortiz D, Folkman C M, Eom C B, Chu Y H, Shafer P, Ramesh R, Vaithyanathan V and Schlom D G 2008 Appl. Phys. Lett. 92 062910
|
[15] |
Ryu J, Priya S, Park C S, Kim K Y, Choi J J, Hahn B D, Yoon W H, Lee B K, Park D S and Park C 2009 J. Appl. Phys. 106 024108
|
[16] |
Lee J W, Park C S, Jo J H and Kim H E 2007 Appl. Phys. Lett. 91 072903
|
[17] |
Zuo Z H, Chen B, Zhan Q F, Liu Y W, Yang H L, Li Z X, Xu G J and Li R W 2012 J. Phys. D:Appl. Phys. 45 185302
|
[18] |
Griggio F, Jesse S, Kumar A, Ovchinnikov O, Kim H, Jackson T N, Damjanovic D, Kalinin S V and Trolier-McKinstry S 2012 Phys. Rev. Lett. 108 157604
|
[19] |
Ayyub P, Chattopadhyay S, Pinto R and Multani M S 1998 Phys. Rev. B 57 R5559
|
[20] |
Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W and Rödel J 2010 Phys. Rev. B 81 014103
|
[21] |
Ge J, Remiens D, Dong X L, Chen Y, Costecalde J, Gao F, Cao F and Wang G S 2014 Appl. Phys. Lett. 105 112908
|
[22] |
Kwon S, Hackenberger W, Alberta E, Furman E and Lanagan M 2011 IEEE Electr. Insul. Mag. 27 43
|
[23] |
Jang H W, Baek S H, Ortiz D, Folkman C M, Eom C B, Chu Y H, Shafer P, Ramesh R, Vaithyanathan V and Schlom D G 2008 Appl. Phys. Lett. 92 062910
|
[24] |
Ryu J, Priya S, Park C S, Kim K Y, Choi J J, Hahn B D, Yoon W H, Lee B K, Park D S and Park C 2009 J. Appl. Phys. 106 024108
|
[25] |
Lee J W, Park C S, Jo J H and Kim H E 2007 Appl. Phys. Lett. 91 072903
|
[26] |
Hao X H, Zhai J W, Zhou F, Song X W and An S L 2010 J. Sol-Gel Sci. Technol. 53 366
|
[27] |
Fujishita H, Shiozaki Y and Sawaguchi E 1979 J. Phys. Soc. Jpn. 46 1391
|
[28] |
Xu B, Cross L E and Ravichandran D 1999 J. Am. Ceram. Soc. 82 306
|
[29] |
Hall D A, Evans J D S, Oliver E C, Withers P J and Mori T 2007 Philos. Mag. Lett. 87 41
|
[30] |
Blue C T, Hicks J C, Park S E, Yoshikawa S and Cross L E 1996 Appl. Phys. Lett. 68 2942
|
[31] |
Park S E, Pan M J, Markowski K, Yoshikawa S and Cross L E 1997 J. Appl. Phys. 82 1798
|
[32] |
Guan F X, Pan J L, Wang J, Wang Q and Zhu L 2010 Macromolecules 43 384
|
[33] |
Furukawa T, Lovinger A J, Davis G T and Broadhurst M G 1983 Macromolecules 16 1885
|
[34] |
Hao X H, Zhai J W, Chou X J and Yao X 2007 Solid State Commun. 142 498
|
[35] |
Li X, Zhai J W and Chen H 2005 J. Appl. Phys. 97 024102
|
[36] |
Burn I and Smyth D M 1972 J. Mater. Sci. 7 339
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|